Synthesis, Structural Determination, and Antifungal Activity of Novel Fluorinated Quinoline Analogs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Spectra Analysis
2.2. Structure Determination
2.3. Fungicidal Activity and SAR
3. Materials and Methods
3.1. Instruments
3.2. Synthesis
3.2.1. Synthesis of Intermediate 1
3.2.2. Synthesis of Target Compounds 2
3.3. Fungicide Bioassays
3.4. Crystal Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Dhakshinamoorthy, A.; Garcia, H. Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev. 2014, 43, 5750–5765. [Google Scholar] [CrossRef] [PubMed]
- Lamberth, C. Heterocyclic chemistry in crop protection. Pest Manag. Sci. 2019, 69, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Prandi, C.; Occhiato, E.G. From synthetic control to natural products: A focus on N-heterocycles. Pest Manag. Sci. 2019, 75, 2385–2402. [Google Scholar] [CrossRef] [PubMed]
- Heravi, M.M.; Mohammadkhani, L. Synthesis of various N-heterocycles using the four-component Ugi reaction. Adv. Heterocycl. Chem. 2020, 131, 351–403. [Google Scholar]
- Wu, X.Q.; Li, W.F. The applications of beta-keto amides for heterocycle synthesis. J. Heterocycl. Chem. 2022, 59, 1445–1490. [Google Scholar] [CrossRef]
- Rajendran, S.; Sivalingam, K.; Jayarampillai, R.P.K.; Wang, W.L.; Salas, C.O. Friedländer’s synthesis of quinolines as a pivotal step in the development of bioactive heterocyclic derivatives in the current era of medicinal chemistry. Chem. Biol. Drug Des. 2022, 100, 1042–1085. [Google Scholar] [CrossRef]
- Prajapati, S.M.; Patel, K.D.; Vekariya, R.H.; Panchal, S.N.; Pate, H.D. Recent advances in the synthesis of quinolines: A review. RSC Adv. 2014, 4, 24463–24476. [Google Scholar] [CrossRef]
- Bouzian, Y.; Karrouchi, K.; Sert, Y.; Lai, C.H.; Mahi, L.; Ahabchane, N.H.; Talbaoui, A.; Mague, J.T.; Essassi, E. Synthesis, spectroscopic characterization, crystal structure, DFT, molecular docking and in vitro antibacterial potential of novel quinoline derivatives. J. Mol. Struct. 2020, 1209, 127940. [Google Scholar] [CrossRef]
- Dolan, N.; Gavin, D.P.; Eshwika, A.; Kavanagh, K.; McGinley, J.; Stephens, J.C. Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure activity relationship study of a quinoline thiourea. Bioorg. Med. Chem. Lett. 2016, 26, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.I.; Mahmood, A.; Madni, M.; Masood, S.; Kashif, M. Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor. Bioorg. Chem. 2014, 54, 31–37. [Google Scholar] [CrossRef]
- Wang, D.W.; Lin, H.Y.; Cao, R.J.; Chen, T.; Wu, F.X.; Hao, G.F.; Chen, Q.; Yang, W.C.; Yang, G.F. Synthesis and Herbicidal Activity of Triketone−Quinoline Hybrids as Novel 4 Hydroxyphenylpyruvate Dioxygenase Inhibitors. J. Agric. Food Chem. 2015, 63, 5587–5596. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wagerle, T.; Long, J.K.; Lahm, G.P.; Barry, J.D.; Smith, R.M. Insecticidal quinoline and isoquinoline isoxazolines. Bioorg. Med. Chem. Lett. 2014, 24, 4026–4030. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Chandra, V.; Jain, P.K.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive Review on Current Developments of Quinoline-Based Anti-cancer Agents. Arab. J. Chem. 2020, 12, 4920–4946. [Google Scholar] [CrossRef] [Green Version]
- Serda, M.; Kalinowski, D.S.; Mrozek-Wilczkiewicz, A.; Musiol, R.; Szurko, A.; Ratuszna, A.; Pantarat, N.; Kovacevic, Z.; Merlot, A.M.; Richardson, D.R.; et al. Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular iron-binding effificacy to anti-tumor effificacy. Bioorg. Med. Chem. Lett. 2012, 22, 5527–5531. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.; Panda, S.S.; Hall, C.D. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur. J. Med. Chem. 2015, 97, 335–355. [Google Scholar] [CrossRef]
- Shah, R.B.; Valand, N.N.; Sutariya, P.G.; Menon, S.K. Design, synthesis and characterization of quinoline–pyrimidine linked calix[4]arene scaffolds as anti-malarial agents. J. Incl. Phenom. Macrocycl. Chem. 2016, 84, 172–178. [Google Scholar] [CrossRef]
- Mullié, C.; Taudon, N.; Degrouas, C.; Jonet, A.; Pascual, A.; Agnamey, P.; Sonnet, P. Enantiomerically pure amino-alcohol quinolines: In vitro anti-malarial activity in combination with dihydroartemisinin, cytotoxicity and in vivo efficacy in a Plasmodium berghei mouse model. Malar. J. 2014, 13, 407. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.R.; Gangwal, R.; Sangamwar, A.T.; Jain, R. Synthesis, biological evaluation and 3D-QSAR study of hydrazide, semicarbazide and thiosemicarbazide derivatives of 4-(adamantan-1-yl)quinoline as anti-tuberculosis agents. Eur. J. Med. Chem. 2014, 85, 255–267. [Google Scholar] [CrossRef]
- Mandewale, M.C.; Thorat, B.; Nivid, Y.; Jadhav, R.; Nagarsekar, A.; Yamgar, R. Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn(II) complexes. J. Saudi Chem. Soc. 2018, 22, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Runge, F.F. Ueber einige produkte der steinkohlendestillation. Ann. Phys. 1834, 107, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Tokunaga, E.; Kobayashi, O. Current Contributions of Organofluorine Compounds to the Agrochemical Industry. iScience 2020, 23, 101467–101520. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P. Latest generation of halogen-containing pesticides. Pest Manag. Sci. 2017, 73, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Zhao, W.; Shen, Z.H.; Xing, J.H.; Yuan, J.; Yang, G. Synthesis, nematocidal activity and docking study of novel chiral 1-(3-chloropyridin-2-yl)-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives. J. Heterocycl. Chem. 2017, 54, 1751–1756. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Zhao, W.; Shen, Z.H.; Xing, J.H.; Xu, T.M.; Peng, W.L. Synthesis, nematocidal activity and SAR study of novel difluoromethylpyrazole carboxamide derivatives containing flexible alkyl chain moieties. Eur. J. Med. Chem. 2017, 125, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Atsushi, S.; Mitsuyuki, Y.; Shigeru, U.; Yoshinori, M. Agrochemical Composition in Form of Aqueous Suspension. AU Patent 2014213426, 29 January 2014. [Google Scholar]
- Takeshi, T.; Makoto, M. Fungicidal Compositions for the Control of Paddy Rice Disease. PubChem Patent WO2004039156, 29 October 2003. [Google Scholar]
- Cai, P.P.; Cheng, L.; Tan, C.X.; Weng, J.Q.; Xu, T.M. New Quinoline Carbonate Derivatives with Perfluoroisopropyl Hybrid: Design, Synthesis, and Fungicidal Activity. Indian J. Heterocycl. Chem. 2019, 29, 243–247. [Google Scholar]
- Cheng, L.; Cai, P.P.; Zhang, R.R.; Han, L.; Tan, C.X.; Weng, J.Q.; Xu, T.M.; Liu, X.H. Synthesis and Biological Activity of Some New 6-perfluoropropanyl Quinoline Derivatives. J. Heterocycl. Chem. 2018, 55, 2585–2589. [Google Scholar] [CrossRef]
- Fang, Y.M.; Zhang, R.R.; Shen, Z.H.; Tan, C.X.; Weng, J.Q.; Xu, T.M.; Liu, X.H.; Huang, H.Y.; Wu, H.K. Synthesis and Antifungal Activity of Some 6-tert-butyl-8-chloro-2,3-dimethylquinolin-4-ol Derivatives against Pyricularia oryae. Lett. Drug Des. Discov. 2018, 15, 1314–1318. [Google Scholar] [CrossRef]
- Fang, Y.M.; Zhang, R.R.; Shen, Z.H.; Wu, H.K.; Tan, C.X.; Weng, J.Q.; Xu, T.M.; Liu, X.H. Synthesis, Antifungal Activity, and SAR Study of Some New 6-Perfluoropropanyl Quinoline Derivatives. J. Heterocycl. Chem. 2018, 55, 240–245. [Google Scholar] [CrossRef]
- Liu, X.H.; Fang, Y.M.; Xie, F.; Zhang, R.R.; Shen, Z.H.; Tan, C.X.; Weng, J.Q.; Xu, T.M.; Huang, H.Y. Synthesis and in vivo fungicidal activity of some new quinoline derivatives against rice blast. Pest Manag. Sci. 2017, 73, 1900–1907. [Google Scholar] [CrossRef]
- Sun, X.P.; Yu, W.; Min, L.J.; Han, L.; Sun, N.B.; Liu, X.H. Synthesis, crystal structure and antifungal activities of new quinolone derivatives. J. Mol. Struct. 2023, 1277, 134792. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXS97 and SHELXL97; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Min, L.J.; Wang, H.; Bajsa-Hirschel, J.; Yu, C.S.; Wang, B.; Yao, M.M.; Han, L.; Cantrell, C.L.; Duke, S.O.; Sun, N.B.; et al. Novel dioxolane ring compounds for the management of Phytopathogen diseases as ergosterol biosynthesis inhibitors: Synthesis, biological activities and molecular docking. J. Agric. Food Chem. 2022, 70, 11470–11484. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Wen, Y.H.; Cheng, L.; Xu, T.M.; Wu, N.J. Design, Synthesis, Pesticidal Activities of Pyrimidin-4-amine Derivatives Bearing a 5-(Trifluoromethyl)-1,2,4-oxadiazole Moiety. J. Agric. Food Chem. 2021, 69, 6968–6980. [Google Scholar] [CrossRef] [PubMed]
Solvent | Yield (%) |
---|---|
DMF | 32.5 |
CH2Cl2 | 59.3 |
Name | 2b |
---|---|
Empirical formula | C22H22FNO2 |
Formula weight | 351.40 |
Temperature/K | 296(2) |
Crystal system | triclinic |
Space group | P-1 |
a/Å | 8.4459(10) |
b/Å | 10.2380(12) |
c/Å | 11.7771(14) |
α/° | 101.100(6) |
β/° | 98.283(6) |
γ/° | 108.547(6) |
Volume/Å3 | 924.05(19) |
Z | 2 |
ρcalcg/cm3 | 1.263 |
μ/mm−1 | 0.087 |
F(000) | 372.0 |
Crystal size/mm3 | 0.36 × 0.28 × 0.18 |
Radiation | MoKα (λ = 0.71073) |
2Θ range for data collection/° | 4.89 to 57.452 |
Index ranges | −11 ≤ h ≤ 10, −13 ≤ k ≤ 13, −15 ≤ l ≤ 15 |
Reflections collected | 13,642 |
Independent reflections | 4164 [Rint = 0.0755, Rsigma = 0.1961] |
Data/restraints/parameters | 4164/0/240 |
Goodness-of-fit on F2 | 1.172 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.1333, wR2 = 0.2614 |
Final R indexes [all data] | R1 = 0.3507, wR2 = 0.3608 |
Largest diff. peak/hole/e Å−3 | 1.19/−1.24 |
No. | AS | GZ | PO | PC | SS | BC | RS | FO | CA | PP |
---|---|---|---|---|---|---|---|---|---|---|
2a | 37.5 | 12.5 | 10.0 | 29.0 | 38.5 | 7.7 | 30.8 | 20.0 | 13.3 | 20.0 |
2b | 43.8 | 33.3 | 50.0 | 32.3 | 84.6 | 53.8 | 50.0 | 20.0 | 46.7 | 48.0 |
2c | 25.0 | 25.0 | 20.0 | 12.9 | 38.5 | 46.2 | 11.5 | 15.0 | 20.0 | 36.0 |
2d | 25.0 | 29.2 | 40.0 | 32.3 | 69.2 | 53.8 | 38.5 | 10.0 | 33.3 | 44.0 |
2e | 56.3 | 29.2 | 20.0 | 38.7 | 80.8 | 26.9 | 11.5 | 45.0 | 33.3 | 72.0 |
2f | 37.5 | 25.0 | 40.0 | 58.1 | 88.5 | 50.0 | 38.5 | 20.0 | 46.7 | 76.0 |
2g | 43.8 | 8.3 | 10.0 | 25.8 | 38.5 | 15.4 | 80.8 | 35.0 | 26.7 | 36.0 |
2h | 18.8 | 16.7 | 20.0 | 22.6 | 46.2 | 23.1 | 38.5 | 15.0 | 13.3 | 40.0 |
2i | 25.0 | 4.2 | 20.0 | 25.8 | 53.8 | 30.8 | 50.0 | 20.0 | 26.7 | 24.0 |
2j | 25.0 | 16.7 | 8.0 | 32.3 | 46.2 | 11.5 | 46.2 | 45.0 | 26.7 | 36.0 |
2k | 25.0 | 12.5 | 20.0 | 48.4 | 84.6 | 38.5 | 38.5 | 20.0 | 33.3 | 76.0 |
2l | 12.5 | 4.2 | 8.0 | 32.3 | 50.0 | 26.9 | 11.5 | 20.0 | 20.0 | 28.0 |
2m | 18.8 | 4.2 | 8.0 | 16.1 | 57.7 | 19.2 | 19.2 | 15.0 | 13.3 | 36.0 |
2n | 37.5 | 33.3 | 20.0 | 29.0 | 84.6 | 57.7 | 69.2 | 35.0 | 60.0 | 76.0 |
2o | 37.5 | 12.5 | 8.0 | 25.8 | 53.8 | 23.1 | 38.5 | 15.0 | 20.0 | 8.0 |
2p | 43.8 | 25.0 | 40.0 | 45.2 | 57.7 | 42.3 | 76.9 | 25.0 | 26.7 | 28.0 |
FP | 83.3 | 85.4 | 63.6 | 58.1 | 75.0 | 56.7 | 69.7 | 42.9 | 37.5 | 65.4 |
CK | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Yu, W.; Min, L.; Han, L.; Hua, X.; Shi, J.; Sun, N.; Liu, X. Synthesis, Structural Determination, and Antifungal Activity of Novel Fluorinated Quinoline Analogs. Molecules 2023, 28, 3373. https://doi.org/10.3390/molecules28083373
Sun X, Yu W, Min L, Han L, Hua X, Shi J, Sun N, Liu X. Synthesis, Structural Determination, and Antifungal Activity of Novel Fluorinated Quinoline Analogs. Molecules. 2023; 28(8):3373. https://doi.org/10.3390/molecules28083373
Chicago/Turabian StyleSun, Xinpeng, Wei Yu, Lijing Min, Liang Han, Xuewen Hua, Jianjun Shi, Nabo Sun, and Xinghai Liu. 2023. "Synthesis, Structural Determination, and Antifungal Activity of Novel Fluorinated Quinoline Analogs" Molecules 28, no. 8: 3373. https://doi.org/10.3390/molecules28083373
APA StyleSun, X., Yu, W., Min, L., Han, L., Hua, X., Shi, J., Sun, N., & Liu, X. (2023). Synthesis, Structural Determination, and Antifungal Activity of Novel Fluorinated Quinoline Analogs. Molecules, 28(8), 3373. https://doi.org/10.3390/molecules28083373