TiO2-MXene/PEDOT:PSS Composite as a Novel Electrochemical Sensing Platform for Sensitive Detection of Baicalein
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Structure and Morphology
2.2. Electrochemical Characterizations
2.3. Electrochemical Behavior of Modified Electrodes
2.4. Optimizations of Analytical Parameters
2.5. Kinetics Studies
2.6. Electrochemical Detection of Baicalein by DPV
2.7. Repeatability, Reproducibility, Stability and Selectivity Studies
2.8. Real Sample Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumental Characterization
3.3. Synthesis of TiO2-MXene/PEDOT:PSS Composite
3.4. Preparation of Modified Electrodes
3.5. Electrochemical Measurement
3.6. Preparation of Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ma, X.; Wang, S.; Li, C.; Jia, X.; Wang, T.; Leng, Z.; Lu, R.; Kong, X.; Zhang, J.; Li, L. Baicalein inhibits the polarization of microglia/macrophages to the M1 phenotype by targeting STAT1 in EAE mice. Int. Immunopharmacol. 2022, 113, 109373. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Ren, X.; Li, X.; Sui, L.; Shi, X.; Sun, Y.; Quan, C.; Xiu, Z.; Dong, Y. Baicalein Enhances the Effect of Acarbose on the Improvement of Nonalcoholic Fatty Liver Disease Associated with Prediabetes via the Inhibition of De Novo Lipogenesis. J. Agric. Food Chem. 2021, 69, 9822–9836. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Yuan, T.; Zeng, Z.; Liu, D.; Liu, C.; Guo, J.; Chen, Y. Mechanistic and therapeutic perspectives of baicalin and baicalein on pulmonary hypertension: A comprehensive review. Biomed. Pharmacother. 2022, 151, 113191. [Google Scholar] [CrossRef]
- Verma, E.; Kumar, A.; Daimary, U.D.; Parama, D.; Girisa, S.; Sethi, G.; Kunnumakkara, A.B. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J. Funct. Foods 2021, 86, 104660. [Google Scholar] [CrossRef]
- Pu, W.; Bai, R.; Zhou, K.; Peng, Y.; Zhang, M.; Hottiger, M.O.; Li, W.; Gao, X.; Sun, L. Baicalein attenuates pancreatic inflammatory injury through regulating MAPK, STAT 3 and NF-κB activation. Int. Immunopharmacol. 2019, 72, 204–210. [Google Scholar] [CrossRef]
- Luo, Z.; Kuang, X.; Zhou, Q.; Yan, C.; Li, W.; Gong, H.; Kurihara, H.; Li, W.; Li, Y.; He, R. Inhibitory effects of baicalein against herpes simplex virus type 1. Acta Pharm. Sin. B 2020, 10, 2323–2338. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Pei, W.; Li, J.; Yang, J.; Ma, J. Calix[4]arene-based [Co4] complex/ordered mesoporous carbon as a highperformance electrocatalyst for efficient detection of baicalein. Sens. Actuators B Chem. 2020, 308, 127677. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, S.; Zhou, M.; Guo, L. A Novel Electrochemical Sensor for Detection of Baicalein in Human Serum Based on DUT-9/Mesoporous Carbon Composite. Electroanalysis 2020, 32, 648–655. [Google Scholar] [CrossRef]
- Baladi, M.; Amiri, M.; Javar, H.A.; Mahmoudi-Moghaddam, H.; Salavati-Niasari, M. Green synthesis of perovskite-type TbFeO3/CuO as a highly efficient modifier for electrochemical detection of methyldopa. J. Electroanal. Chem. 2022, 915, 116339. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, J.; Shao, W.; Liu, X.; Zhang, X.; Chen, F.; Qin, X.; Wang, L.; Luo, D.; Qiao, X. Modification of electrodes with self-assembled, close-packed AuNPs for improved signal reproducibility toward electrochemical detection of dopamine. Electrochem. Commun. 2021, 133, 107161. [Google Scholar] [CrossRef]
- Zhou, G.; Zhao, X.; Xiong, Y.; Tang, Y.; Ma, X.; Tao, Q.; Sun, C.; Xu, W. A review of etching methods of MXene and applications of MXene conductive hydrogels. Eur. Polym. J. 2022, 167, 111063. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X. Electrically Conductive, Optically Responsive, and Highly Orientated Ti3C2Tx MXene Aerogel Fibers. Adv. Funct. Mater. 2022, 32, 2107767. [Google Scholar] [CrossRef]
- Nam, S.; Kim, J.; Nguyen, V.H.; Mahato, M.; Oh, S.; Thangasamy, P.; Ahn, C.W.; Oh, I.K. Collectively Exhaustive MXene and Graphene Oxide Multilayer for Suppressing Shuttling Effect in Flexible Lithium Sulfur Battery. Adv. Mater. Technol. 2021, 7, 2101025. [Google Scholar] [CrossRef]
- Malaki, M.; Varma, R.S. Mechanotribological Aspects of MXene-Reinforced Nanocomposites. Adv. Mater. 2020, 32, 2003154. [Google Scholar] [CrossRef]
- Soomro, R.A.; Jawaid, S.; Zhu, Q.; Abbas, Z.; Xu, B. A mini-review on MXenes as versatile substrate for advanced sensors. Chin. Chem. Lett. 2020, 31, 922–930. [Google Scholar] [CrossRef]
- Wu, Z.; Fang, J.; Liu, N.; Wu, J.; Kong, L. The Improvement in Hydrogen Storage Performance of MgH2 Enabled by Multilayer Ti3C2. Micromachines 2021, 12, 1190. [Google Scholar] [CrossRef]
- Wu, K.; Feng, Y.; Xie, Y.; Zhang, J.; Xiong, D.; Chen, L.; Feng, Z.; Wen, K.; He, M. Ti3C2/fluorine-doped carbon as anode material for high performance potassium-ion batteries. J. Alloys Compd. 2023, 938, 168430. [Google Scholar] [CrossRef]
- Dong, G.; Fang, Y.; Li, L.; Li, Z.; Liao, S.; Zhu, K.; Yan, J.; Ye, K.; Wang, G.; Cao, D. Three-dimensional Ti3C2Tx and MnS composites as anode materials for high performance alkalis (Li, Na, K) ion batteries. J. Colloid Interface Sci. 2023, 633, 468–479. [Google Scholar] [CrossRef]
- Rajavel, K.; Shen, S.; Ke, T.; Lin, D. Photocatalytic and bactericidal properties of MXene-derived graphitic carbon-supported TiO2 nanoparticles. Appl. Surf. Sci. 2021, 538, 148083. [Google Scholar] [CrossRef]
- Lv, T.; Xiao, B.; Zhou, S.; Zhao, J.; Wu, T.; Zhang, J.; Zhang, Y.; Liu, Q. Rich oxygen vacancies, mesoporous TiO2 derived from MIL-125 for highly efficient photocatalytic hydrogen evolution. Chem. Commun. 2021, 57, 9704–9707. [Google Scholar] [CrossRef]
- Troughton, J.; Peillon, N.; Borbely, A.; Rodriguez-Pereira, J.; Pavlinak, D.; Macak, J.M.; Djenizian, T.; Ramuz, M. High conductivity PEDOT:PSS through laser micro-annealing: Mechanisms and application. J. Mater. Chem. C. 2022, 10, 16592–16603. [Google Scholar] [CrossRef]
- Song, H.; Meng, Q.; Lu, Y.; Cai, K. Progress on PEDOT:PSS/Nanocrystal Thermoelectric Composites. Adv. Electron. Mater. 2019, 5, 1800822. [Google Scholar] [CrossRef]
- Saeed, M.A.; Kim, S.H.; Baek, K.; Hyun, J.K.; Lee, S.Y.; Shim, J.W. PEDOT:PSS: CuNW-based transparent composite electrodes for high-performance and flexible organic photovoltaics under indoor lighting. Appl. Surf. Sci. 2021, 567, 150852. [Google Scholar] [CrossRef]
- Ruggiero, A.; Criscuolo, V.; Grasselli, S.; Bruno, U.; Ausilio, C.; Bovio, C.L.; Bettucci, O.; Santoro, F. Two-photon polymerization lithography enabling the fabrication of PEDOT:PSS 3D structures for bioelectronic applications. Chem. Commun. 2022, 58, 9790–9793. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Li, X.; Li, H.; Du, B.; Zhou, S. A stretchable and printable PEDOT:PSS/PDMS composite conductors and its application to wearable strain sensor. Prog. Org. Coat. 2022, 162, 106593. [Google Scholar] [CrossRef]
- Du, H.; Zhang, M.; Liu, K.; Parit, M.; Jiang, Z.; Zhang, X.; Li, B.; Si, C. Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J. 2022, 428, 131994. [Google Scholar] [CrossRef]
- Zuo, J.; Shen, Y.; Gao, J.; Song, H.; Ye, Z.; Liang, Y.; Zhang, S. Highly sensitive determination of paracetamol, uric acid, dopamine, and catechol based on flexible plastic electrochemical sensors. Anal. Bioanal. Chem. 2022, 414, 5917–5928. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Wang, G.; Zhang, X.; Dong, X. Oxygen vacancies modified TiO2/Ti3C2 derived from MXenes for enhanced photocatalytic degradation of organic pollutants: The crucial role of oxygen vacancy to schottky junction. Appl. Surf. Sci. 2020, 528, 146929. [Google Scholar] [CrossRef]
- Javar, H.A.; Mahmoudi-Moghaddam, H.; Rajabizadeh, A.; Hamzeh, S.; Akbari, E. Development of an electrochemical sensor based on Ce3+ and CuO for the determination of amaranth in soft drinks. Microchem. J. 2022, 183, 108081. [Google Scholar] [CrossRef]
- Laviron, E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 1974, 52, 355–393. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, Y.; Lei, S.; Liu, Z.; Li, G.; Ye, B. Sensitive determination of baicalein based on functionalized graphene loaded RuO2 nanoparticles modified glassy carbon electrode. Talanta 2018, 188, 714–721. [Google Scholar] [CrossRef]
- Xie, Z.; Lu, W.; Yang, L.; Li, G.; Ye, B. A voltammetry sensor platform for baicalein and baicalin simultaneous detection in vivo based on Ta2O5-Nb2O5@CTS composite. Talanta 2017, 170, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, Y.; He, L. Sensitive Voltammetric Determination of Baicalein at Thermally Reduced Graphene Oxide Modified Glassy Carbon Electrode. Electroanalysis 2013, 25, 2136–2144. [Google Scholar] [CrossRef]
- Cheng, H.; Weng, W.; Xie, H.; Liu, J.; Luo, G.; Huang, S.; Sun, W.; Li, G. Au-Pt@Biomass porous carbon composite modiffed electrode for sensitive electrochemical detection of baicalein. Microchem. J. 2020, 154, 104602. [Google Scholar] [CrossRef]
- Kong, B.; Yang, X.; Dai, H.; Wu, Y.; Lu, H.; Liu, W.; Liu, X. Sensitive Electrochemical Determination of Baicalein Based on D-Ti3C2Tx MXene/Fullerene Composite Modified Glassy Carbon Electrode. Electroanalysis 2022, 34, 1564–1571. [Google Scholar] [CrossRef]
- Kuzmanović, D.; Stanković, D.M.; Manojlović, D.; Kalcher, K.; Roglić, G. Baicalein-main active flavonoid from Scutellaria baicalensis-voltammetric sensing in human samples using boron doped diamond electrode. Diam. Relat. Mater. 2015, 58, 35–39. [Google Scholar] [CrossRef]
- Xie, Z.; Li, G.; Fu, Y.; Sun, M.; Ye, B. Sensitive, simultaneous determination of chrysin and baicalein based on Ta2O5-chitosan composite modified carbon paste electrode. Talanta 2017, 165, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, M.; Yang, S.; Shan, J. A novel electrochemical sensor based on TiO2-Ti3C2TX/CTAB/chitosan composite for the detection of nitrite. Electrochim. Acta 2020, 359, 136938. [Google Scholar] [CrossRef]
Modified Electrodes | Method | Linear Range (μM) | Detection Limit (nM) | Reference |
---|---|---|---|---|
Ta2O5-Nb2O5@CTS a/CPE b | DPV | 0.08–8 | 50 | [32] |
TRGO c/GCE | DPV | 0.01–1; 1–10 | 6 | [33] |
Au-Pt@BPC d/CILE e | DPV | 0.48–2; 4–140 | 10 | [34] |
D-Ti3C2Tx/C60 f/GCE | DPV | 0.015–4.0 | 5 | [35] |
BDD g electrode | SWV h | 1–95 | 260 | [36] |
Ta2O5-CTS i/CPE | LSV j | 0.08–4 | 50 | [37] |
TiO2-MXene/PEDOT:PSS/GCE | DPV | 0.007–10.00 | 2.33 | This work |
Sample | Added (μM) | Found (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 0 | - | - | - |
2 | 0.5 | 0.49 ± 0.02 | 98.0 | 3.19 |
3 | 1 | 1.02 ± 0.03 | 102.0 | 2.31 |
4 | 3 | 3.05 ± 0.09 | 101.7 | 2.18 |
5 | 5 | 4.93 ± 0.13 | 98.6 | 1.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, S.; Shi, M.; Wang, J.; Li, J.; Peng, G.; Xu, J.; Gao, Y.; Duan, X.; Lu, L. TiO2-MXene/PEDOT:PSS Composite as a Novel Electrochemical Sensing Platform for Sensitive Detection of Baicalein. Molecules 2023, 28, 3262. https://doi.org/10.3390/molecules28073262
Xue S, Shi M, Wang J, Li J, Peng G, Xu J, Gao Y, Duan X, Lu L. TiO2-MXene/PEDOT:PSS Composite as a Novel Electrochemical Sensing Platform for Sensitive Detection of Baicalein. Molecules. 2023; 28(7):3262. https://doi.org/10.3390/molecules28073262
Chicago/Turabian StyleXue, Shuya, Min Shi, Jinye Wang, Jiapeng Li, Guanwei Peng, Jingkun Xu, Yansha Gao, Xuemin Duan, and Limin Lu. 2023. "TiO2-MXene/PEDOT:PSS Composite as a Novel Electrochemical Sensing Platform for Sensitive Detection of Baicalein" Molecules 28, no. 7: 3262. https://doi.org/10.3390/molecules28073262
APA StyleXue, S., Shi, M., Wang, J., Li, J., Peng, G., Xu, J., Gao, Y., Duan, X., & Lu, L. (2023). TiO2-MXene/PEDOT:PSS Composite as a Novel Electrochemical Sensing Platform for Sensitive Detection of Baicalein. Molecules, 28(7), 3262. https://doi.org/10.3390/molecules28073262