Novel Amperometric Mercury-Selective Sensor Based on Organic Chelator Ionophore
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural, Morphological, and Chemical Characterization of Nanostructures
2.2. Electrochemical Characterisation of the Modified Electrodes in the Presence of Hg2+
2.3. Optimization of Fixed-Potential Amperometry Experimental Conditions
2.3.1. Influence of the Applied Potential
2.3.2. Influence of pH
2.3.3. Influence of the Ionophore Concentration
2.4. Determination of Mercury Cations at Ionophore Modified Electrodes—Influence of MWCNT
2.5. Repeatability, Reproducibility, and Stability
2.6. Selectivity
2.7. Application
3. Materials and Methods
3.1. Reagents
3.2. Instrumentation
3.3. Preparation of [N, N Di (2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzaldehyde) benzene-1,2-diamine) (NDBD)
3.4. Electrode Modification
3.5. Mercury Response Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kermani, S.M.J.M.; Ghanei-Motlagh, M.; Zhiani, R.; Taher, M.A.; Fayazi, M.; Razavipanah, I. Novel solid-state mercury(II)-selective electrode based on symmetrical sulfur-containing carrier. J. Mol. Liq. 2015, 206, 145–150. [Google Scholar] [CrossRef]
- Teodoro, K.B.R.; Migliorini, F.L.; Facure, M.H.M.; Correa, D.S. Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury (II). Carbohydr. Polym. 2017, 207, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Ariño, C.; Serrano, N.; Díaz-Cruz, J.M.; Esteban, M. Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal. Chim. Acta 2017, 990, 11–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, C.-C.; Hsieh, C.-T.; Juang, R.-S.; Gu, S.; Gandomi, Y.A.; Kelly, R.E.; Kihm, K.D. Electrochemical sensing of mercury ions in electrolyte solutions by nitrogen-doped graphene quantum dot electrodes at ultralow concentrations. J. Molec. Liq. 2020, 302, 112593. [Google Scholar] [CrossRef]
- Saleh, T.A.; Fadillah, G.; Ciptawati, E.; Khaled, M. Analytical methods for mercury speciation, detection, and measurement in water, oil, and gas. TrAC—Trends Anal. Chem. 2020, 132, 116016. [Google Scholar] [CrossRef]
- Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanski, A. Mercury mass measurement in fluorescent lamps via neutron activation analysis. Radiat. Phys. Chem. 2015, 116, 56–59. [Google Scholar] [CrossRef]
- Ma, S.; He, M.; Chen, B.; Deng, W.; Zheng, Q.; Hu, B. Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples. Talanta 2016, 146, 93–99. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Mao, A.; Li, H.; Cai, Z.; Hu, X. Determination of mercury using a glassy carbon electrode modified with nano TiO2 and multi-walled carbon nanotubes composites dispersed in a novel cationic surfactant. J. Electroanal. Chem. 2015, 751, 23–29. [Google Scholar] [CrossRef]
- Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon nanotube—A review on synthesis, properties and plethora of applications in the field of biomedical science. Sens. Int. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Ferrier, D.C.; Honeychurch, K.C. Carbon nanotube (CNT)-based biosensors. Biosensors 2021, 11, 486. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Huo, M.; Zhou, M.; Chang, H.; Li, J.; Zhang, Q.; Fang, Y.; Wang, H.; Zhang, D. Carbon nanomaterials-based electrochemical sensors for heavy metal detection. Crit. Rev. Anal. Chem. 2022, in press. [CrossRef] [PubMed]
- Pokhrel, L.R.; Ettore, N.; Jacobs, Z.L.; Zarr, A.; Weir, M.H.; Scheuerman, P.R.; Kanel, S.R.; Dubey, B. Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury (II) detection in water: A review. Sci. Total Environ. 2017, 574, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Bohari, N.A.; Siddiquee, S.; Saallah, S.; Misson, M.; Arshad, S.E. Optimization and analytical behavior of electrochemical sensors based on the modification of indium tin oxide (ITO) using PANI/MWCNTs/AuNPs for mercury detection. Sensors 2020, 20, 6502. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.W.; Kim, T.-Y.; Woo, M.-A. Trends in sensor development towards next-generation point-of-care testing for mercury. Biosens. Bioelectron. 2021, 183, 113228. [Google Scholar] [CrossRef]
- Eksin, E.; Erdem, A.; Fafal, T.; KivçaK, B. Eco-friendly sensors developed by herbal based silver nanoparticles for electrochemical detection of mercury (II) ion. Electroanalysis 2019, 31, 1075–1082. [Google Scholar] [CrossRef]
- Sharma, V.V.; Tonelli, D.; Guadagnini, L.; Gazzano, M. Copper-cobalt hexacyanoferrate modified glassy carbon electrode for an indirect electrochemical determination of mercury. Sens. Actuator B—Chem. 2017, 238, 9–15. [Google Scholar] [CrossRef]
- Karthika, A.; Ramasamy Raja, V.; Karuppasamy, P.; Suganthi, A.; Rajarajan, M. Electrochemical behaviour and voltammetric determination of mercury(II) ion in cupric oxide/poly vinyl alcohol nanocomposite modified glassy carbon electrode. Microhem. J. 2019, 145, 737–744. [Google Scholar] [CrossRef]
- Bao, Q.; Li, G.; Yang, Z.; Pan, P.; Liu, J.; Chang, J. Electrochemical performance of a three-layer electrode based on Bi nanoparticles, multi-walled carbon nanotube composites for simultaneous Hg(II) and Cu(II) detection. Chin. Chem. Lett. 2020, 31, 2752–2756. [Google Scholar] [CrossRef]
- Shirzadmehr, A.; Afkhami, A.; Madrakian, T. A new nano-composite potentiometric sensor containing an Hg2+-ion imprinted polymer for the trace determination of mercury ions in different matrices. J. Mol. Liq. 2015, 204, 227–235. [Google Scholar] [CrossRef]
- Mondal, S.; Subramaniam, C. Scalable approach towards specific and ultrasensitive cation sensing under harsh environmental conditions by engineering the analyte-transducer interface. Nanoscale Adv. 2021, 3, 3752–3761. [Google Scholar] [CrossRef] [PubMed]
- Moutcine, A.; Chtaini, A. Electrochemical determination of trace mercury in water sample using EDTA-CPE modified electrode. Sens. Biosens. Res. 2018, 17, 30–35. [Google Scholar] [CrossRef]
- Ceken, B.; Kandaz, M.; Koca, A. Electrochemical metal-ion sensors based on novel manganese phtalocyanine complex. Synth. Met. 2012, 162, 1524–1530. [Google Scholar] [CrossRef]
- Wu, W.; Jia, M.; Zhang, Z.; Chen, X.; Zhang, Q.; Zhang, W.; Li, P.; Chen, L. Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost Fe3O4 nanoparticles/fluorinated multi-walled carbon nanotubes sensor. Ecotoxicol. Environ. Saf. 2019, 175, 243–250. [Google Scholar] [CrossRef]
- Matlou, G.G.; Nkosi, D.; Pillay, K.; Arotiba, O. Electrochemical detection of Hg (II) in water using self-assembled single walled carbon nanotube-poly (m-amino benzene sulfonic acid) on gold electrode. Sens. Biosensing Res. 2016, 10, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Jeromiyas, N.; Elayiappillai, E.; Kumar, A.S.; Huang, S.-T.; Mani, V. Bismuth nanoparticles decorated graphenated carbon nanotubes modified screen-printed electrode for mercury detection. J. Taiwan. Inst. Chem. Eng. 2019, 95, 466–474. [Google Scholar] [CrossRef]
- Ali, T.A.; Mohamed, G.G. Multi-walled carbon nanotube and nanosilica chemically modified carbon paste electrodes for determination of mercury (II) ion in polluted water samples. Anal. Methods 2015, 7, 6280–6289. [Google Scholar] [CrossRef]
- Abbaspour, A.; Akhond, M.; Shahriyari, M.R.; Ahmadpour, S.; Mirahmadi, E.; Ebrahimi, E.; Jarrahpour, A.A. Carbon nanotube composite coated stainless steel disk electrode with polypyrolle film as ion-to-electron transducer for the determination of Hg (II). Anal. Bioanal. Electrochem. 2017, 9, 614–629. [Google Scholar]
- Hon, T.W.; Ling, L.S.; Tung, C.C. TEM and XRD analysis of carbon nanotubes synthesised from flame. Key Eng. Mater. 2017, 723, 470–475. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Wang, W.; Guo, A.; Li, J.; Li, H. Efficient and robust reactions for polyethylene covalently grafted carbon nanotubes. Macromol. Chem. Phys. 2017, 218, 1600449. [Google Scholar] [CrossRef]
- Das, R.; Abd Hamid, S.B.; Ali, M.E.; Ramakrishna, S.; Yongzhi, W. Carbon nanotubes characterization by X-ray powder diffraction—A review. Curr. Nanosci. 2015, 11, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cong, Y.; Zhao, H. Solid–liquid equilibrium for the ternary system 2-methyl-4-nitroaniline+ 2-methyl-6-nitroaniline+ ethyl acetate: Determination and modelling. J. Solut. Chem. 2018, 47, 231–245. [Google Scholar] [CrossRef]
- Paulraj, P.; Manikandan, A.; Manikandan, E.; Pandian, K.; Moodley, M.K.; Roro, K.; Murugan, K. Solid-state synthesis of POPD@AgNPs nanocomposites for electrochemical sensors. J. Nanosci. Nanotechnol. 2018, 18, 3991–3999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucureanu, V.; Matei, A.; Avram, A.M. FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, K.; Irandoust, M.; Rafiee, E.; Joshaghani, M. Synthesis, characterization, and tautomeric properties of some azo-azomethine compounds. Z. Nat. 2012, 67b, 159–164. [Google Scholar] [CrossRef]
- Eskikanbur, S.; Sayin, K.; Köse, M.; Zengin, H.; McKee, V.; Kurtoglu, M. Synthesis of two new azo-azomethines; spectral characterization, crystal structures, computational and fluorescence studies. J. Mol. Struct. 2015, 1094, 183–194. [Google Scholar] [CrossRef]
- Younis, A.M.; El-Gamil, M.M.; Rakha, T.H.; Abu El-Reash, G.M. Iron(II), copper(II), cadmium(II), and mercury(II) complexes of isatin carbohydrazone Schiff base ligand (H3L): Synthesis, characterization, X-ray diffraction, cyclic voltammetry, fluorescence, density functional theory, biological activity, and molecular docking studies. Appl. Organomet. Chem. 2021, 35, e6250. [Google Scholar] [CrossRef]
- Shtepliuk, I.; Vagin, M.; Yakimova, R. Insights into the electrochemical behavior of mercury on graphene/SiC electrode. C-J. Carbon Res. 2019, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Dang, V.H.; Yen, P.T.H.; Giao, N.Q.; Phong, P.H.; Ha, V.T.T.; Duy, P.K.; Hoeil, C. A versatile carbon fibre cloth-supported Au nanodendrite sensor for simultaneous determination of Cu(II), Pb(II), and Hg(II). Electroanalysis 2018, 30, 2222–2227. [Google Scholar] [CrossRef]
- Deshmukh, M.A.; Celiesiute, R.; Ramanaviciene, A.; Shirsat, M.D.; Ramanavicius, A. EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II), and mercury (II) ions. Electrochim. Acta 2018, 259, 930–938. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, Q.; Gu, X.; Yang, N.; Zhao, G. Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale 2019, 11, 11992. [Google Scholar] [CrossRef] [PubMed]
- Martín-Yerga, D.; Costa-García, A. Recent advances in the electrochemical detection of mercury. Curr. Oppin. Electrochem. 2017, 3, 91–96. [Google Scholar] [CrossRef]
- Hassan, R.Y.A.; Kamel, M.S.; Hassan, H.N.A.; Khaled, E. Voltammetric determination of mercury in biological samples using crown ether/multiwalled carbon nanotube-based sensor. J. Electroanal. Chem. 2015, 759, 101–106. [Google Scholar] [CrossRef]
- Bohari, N.A.; Siddiquee, S.; Saallah, S.; Mission, M.; Arshad, S.E. Electrochemical behaviour of real-time sensor for determination mercury in cosmetic products based on PANI/MWCNTs/AuNPs/ITO. Cosmetics 2021, 8, 17. [Google Scholar] [CrossRef]
- RasulKhan, B.; Periakaruppan, P.; Ponnaiah, S.K.; Venkatachalam, G.; Jeyaprabha, B. A new nanocomposite electrode of carbon quantum dots doped functionalized multi-walled carbon nanotubes for lethal mercury sensing. J. Clust. Sci. 2021, 32, 135–144. [Google Scholar] [CrossRef]
- Jayadevimanoranjitham, J.; Narayanan, S.S. Poly O-Cresophthalein complexone film coated multi-walled carbon nanotubes (MWCNTs-POCF) modified electrode for determination of mercury. AIP Conf. Proc. 2020, 2265, 030325. [Google Scholar] [CrossRef]
- Dairaku, T.; Furuita, K.; Sato, H.; Sebera, J.; Yamanaka, D.; Otaki, H.; Kikkawa, S.; Kondo, Y.; Katahira, R.; Bickelhaupt, F.M.; et al. Direct detection of the mercury-nitrogen bond in the thymine-HgII-thymine base-pair with 199Hg NMR spectroscopy. Chem. Comm. 2015, 51, 8488. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, W.; Ghica, M.E.; Brett, C.M.A. Novel nanocomposite film modified electrode based on poly(brilliant cresyl blue)-deep eutectic solvent/carbon nanotubes and its biosensing applications. Electrochim. Acta 2019, 317, 766–777. [Google Scholar] [CrossRef]
Ionophore conc. /% | L.R. /µM | Slope /µA cm−2 µM−1 | LOD /µM | LOQ /µM | R2 |
---|---|---|---|---|---|
0.3 | 150–1250 | 38.1 | 28.6 | 94.4 | 0.9995 |
0.5 | 150–1250 | 55.0 | 11.6 | 38.3 | 0.9999 |
0.7 | 150–1250 | 29.0 | 32.3 | 106.6 | 0.9993 |
0.9 | 150–1250 | 29.1 | 29.8 | 98.3 | 0.9994 |
MWCNT conc. /% | L.R. /µM | Slope /µA cm−2 µM−1 | LOD /µM | LOQ /µM | R2 |
---|---|---|---|---|---|
0.2 | 1–25 | 43.1 | 1.7 | 3.9 | 0.99605 |
0.5 | 1–25 | 514.6 | 0.06 | 0.20 | 0.99898 |
Electrode Composition | Method | L.R /µM | LOD /µM | Ref |
---|---|---|---|---|
TiO2/MWCNT/DHAHPTMA/GCE | LSASV | 0.1–100 | 0.025 | [9] |
Cu–CoHCF/GCE (+CySH in sol.) | CA | 0.25–5.0 | 0.080 | [17] |
MnPc/Nafion/GCE | DPSCA | 2.0–12.0 | NS | [23] |
MWCNT-BHOB-SiNP/CPE | POT | 0.018–100,000 | 0.018 | [27] |
Crown ether/MWCNT/CPE | LSASV | 25–548 | 1.2 | [43] |
MB/AuNP/MWCNT/PANI/ITO | DPASV | 0.05–50 | 0.40 | [44] |
MWCNT-CQD/GCE | DPV | 0.001–0.012 | 0.0005 | [45] |
MWCNT-POCF/PIGE | DPASV | 0.025–0.41 | 0.0082 | [46] |
NDBD/MWCNT/GCE | CA | 1.0–25.0 | 0.060 | This work |
Sample | Added /µM | Found /µM | Recovery /% |
---|---|---|---|
2.0 | 1.92 ± 0.07 | 96.0 | |
Tap water | 5.0 | 4.87 ± 0.10 | 97.4 |
10.0 | 9.81 ± 0.18 | 98.1 | |
Milk | 2.0 5.0 10.0 | 1.87 ± 0.05 4.81 ± 0.10 9.75 ± 0.21 | 93.5 96.2 97.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsebai, B.; Ghica, M.E.; Abbas, M.N.; Brett, C.M.A. Novel Amperometric Mercury-Selective Sensor Based on Organic Chelator Ionophore. Molecules 2023, 28, 2809. https://doi.org/10.3390/molecules28062809
Elsebai B, Ghica ME, Abbas MN, Brett CMA. Novel Amperometric Mercury-Selective Sensor Based on Organic Chelator Ionophore. Molecules. 2023; 28(6):2809. https://doi.org/10.3390/molecules28062809
Chicago/Turabian StyleElsebai, Basant, Mariana Emilia Ghica, Mohammed Nooredeen Abbas, and Christopher M. A. Brett. 2023. "Novel Amperometric Mercury-Selective Sensor Based on Organic Chelator Ionophore" Molecules 28, no. 6: 2809. https://doi.org/10.3390/molecules28062809
APA StyleElsebai, B., Ghica, M. E., Abbas, M. N., & Brett, C. M. A. (2023). Novel Amperometric Mercury-Selective Sensor Based on Organic Chelator Ionophore. Molecules, 28(6), 2809. https://doi.org/10.3390/molecules28062809