Biological Activities and Chemical Composition of Essential Oil from Hedyosmum purpurascens (Todzia)—An Endemic Plant in Ecuador
Abstract
:1. Introduction
2. Results
2.1. Physical Properties
2.2. Chemical Constituents of Essential Oil
2.3. Enantiomeric Composition
2.4. Antimicrobial Activity
2.5. Antioxidant Activity
2.6. Anticholinesterase Activity
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Plant Material
4.3. Isolation of the Essential Oil
4.4. Physical Properties of Essential Oil
4.5. Chemical Characterization of Essential Oil
4.5.1. Sample Preparation
4.5.2. Qualitative and Quantitative Analysis
4.5.3. Enantioselective Analysis
4.6. Anticholinesterase Activiy
4.7. Antimicrobial Activity
4.8. Antioxidant Spectrophotometric Analysis
4.8.1. DPPH Assay
4.8.2. ABTS Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorenzo, D.; Loayza, I.; Dellacassa, E. Composition of the essential oils form leaves of two Hedyosmum spp from Bolivia. Flavor Fragr. J. 2003, 18, 32–35. [Google Scholar] [CrossRef]
- Forero, E.; Mori, S. The Organization for Flora Neotropica. Brittonia 1995, 47, 379–393. [Google Scholar] [CrossRef]
- Eras, M.T.; Mendoza, Z.A.; Tamayo, J.P. Diversidad florística, endemismo y estado de conservación de los componentes arbustivo y herbáceo de un bosque andino en el sur del Ecuador. Bosques Latid. Cero 2021, 11, 83–96. [Google Scholar]
- Kirchner, K.; Wisniewski, A., Jr.; Bella-Cruz, A.; Biavatti, M.W.; Netz, A.D. Chemical composition and antimicrobial activity of Hedyosmum brasiliense Miq., Chloranthaceae, essential oil. Braz. J. Pharmacogn. 2010, 20, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, D.; Fan, G.; Wang, R.; Lu, X.; Gu, Y.; Shi, Q.W. Constituents from Chloranthaceae plants and their biological activities. Heterocycl. Commun. 2016, 22, 175–220. [Google Scholar] [CrossRef] [Green Version]
- Ulloa, U.; Moler, J. Floras. Available online: http://www.efloras.org/florataxon.aspx?flora_id=201&taxon_id=114826 (accessed on 15 September 2022).
- Leon-Yanez, S.; Valencia, R.; Pitman, N.; Endara, L.; Ulloa, C.; Navarrete, H. Libro Rojo de las Plantas Endémicas del Ecuador; Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 2019; Available online: https://bioweb.bio/floraweb/librorojo/hom (accessed on 29 September 2022).
- Torres-Rodríguez, S.H.; Tovar-Torres, M.C.; Garcia, V.J.; Lucena, M.E.; Araujo-Baptista, L. Composición química del aceite esencial de de las hojas de Hedyosmum Luteynii Todzia (Chloranthaceae). Rev. Peru. De Biol. 2018, 25, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, L.; Rodriguez, J.; Villaverde, M.; Rivera, R.; Cadena, R.; Otero, J. The analgesic activity of Hediosmum bonplandianum. Planta Med. 1993, 59, 26–27. [Google Scholar] [CrossRef]
- Lozano, P.; Delgado, T.; Aguirre, Z. Estado Actual de la Flora Endémica Exclusiva y su Distribución en el Occidente del Parque Nacional Podocarpus; Publicaciones del Herbario y Jardín Botánico Reinaldo Espinosa: Loja, Ecuador, 2003. [Google Scholar]
- Lozano, P.; Delgado, T.; Aguirre, Z. Endemismo una Herramienta para la Conservación. Parque Nacional Podocarpus; Publicaciones del Herbario y Jardín Botánico Reinaldo Espinosa: Loja, Ecuador, 2004. [Google Scholar]
- Lozano, P.; Bussmann, R.; Küppers, M. Diversidad florística del bosque montano en el Occidente del Parque Nacional Podocarpus, Sur del Ecuador y su influencia en la flora pionera en deslizamientos naturales. Rev. UDO Agrícola 2007, 7, 142–159. [Google Scholar]
- Zamora-Birbano, A.M.; Arturo-Perdomo, D.E. Composición química del aceite esencial de hojas Hedyosmum traslucidum Cuatrec., Chloranthaceae (Granizo). Bol. Latinoam. Caribe Plantas Med. Aromáticas 2016, 15, 192–198. [Google Scholar]
- Sylvestre, M.; Pichette, A.; Longtin, A.; Martin, M.-A.C.D.K.; Bercion, S.R.; Legault, J. Chemical Composition of Leaf Essential Oil of Hedyosmum arborescens and Evaluation of its Anticancer Activity. Nat. Prod. Commun. 2007, 2, 1269–1272. [Google Scholar] [CrossRef]
- Mundina, M.; Roser, V.; Felix, T.; Cicciò, J.F.; Adezt, T.I.; Casanova, J.; Cañigueral, S. Composition of the essential oils from leaves and fruits of three Hedyosmum species from Costa Rica. Flavour Fragr. J. 2000, 15, 201–205. [Google Scholar] [CrossRef]
- Delgado, P.A.; Quijano, C.E.; Morales, G.; Pino, J.A. Composition of the Essential Oil from Leaves and Fruits of Hedyosmum colombianum Cuatrec. Grown in Colombia. J. Essent. Oil Res. 2010, 22, 234–236. [Google Scholar] [CrossRef]
- Guerrini, A.; Gianni, S.; Grandini, A.; Spagnoletti, A.; Asanza, M.; Scalvenzi, L. Cytotoxic Effect and TLC Bioautography-Guided Approach to Detect Health Properties of Amazonian Hedyosmum sprucei Essential Oil. Evid. Based Complement. Altern. Med. 2016, 2016, 5–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danis, M.; Ávila, D.; Ortega, J.; Peña, N.; Rojas, L.; Cepeda, Y. Composición química del aceite esencial de Hedyosmum glabratum. Ciencia 2012, 20, 68–72. [Google Scholar]
- Grandtner, M.M.; Cheverette, J. Dictionay of Trees, 1st ed.; Laval University: Quebec, QC, Canada, 2013; ISBN 9780123969545. [Google Scholar]
- Valarezo, E.; Morocho, V.; Cartuche, L.; Chamba-Granda, F.; Correa-Conza, M.; Jaramillo-Fierro, X.; Meneses, M.A. Variability of the Chemical Composition and Bioactivity between the Essential Oils Isolated from Male and Female Specimens of Hedyosmum racemosum (Ruiz y Pav) G. Don. Molecules 2021, 26, 4613. [Google Scholar] [CrossRef]
- Bisio, A.; Ciarallo, G.; Romussi, G.; Fontana, N.; Mascolo, N.; Capasso, R.; Biscardi, D. Chemical Composition of Essential Oils from some Salvia species. Phytother. Res. 1998, 12, s117–s120. [Google Scholar] [CrossRef]
- Grujic-Jovanovic, S.; Skaltsa, H.D.; Marin, P.; Sokovic, M. Composition and Antibacterial activity of the essential oil of six Stachys species from Serbia. Flavour Fragr. J. 2004, 19, 139–144. [Google Scholar] [CrossRef]
- Capetanos, C.; Saroglou, V.; Marin, P.D.; Simic, A.; Skaltsa, H.D. Essential oil analysis of two endemic Eringium species from Serbia. J. Serb. Chem. Soc. 2007, 72, 961–965. [Google Scholar] [CrossRef]
- Narain, N.; Galvao, M.S.; Madruga, M.S. Volatile compounds captured through purge and trap technique in caja-umbu (Spondias sp.) fruits during maturation. Food Chem. 2007, 102, 726–731. [Google Scholar] [CrossRef]
- Saroglou, V.; Marin, P.D.; Rancic, A.; Veljic, M.; Skaltsa, H. Composition and antimicrobial activity of the essential oil of six Hypericum species from Serbia. Biochem. Syst. Ecol. 2007, 35, 146–152. [Google Scholar] [CrossRef]
- Hua, C.X.; Wang, G.R.; Lei, Y. Evaluation of essential oil composition and DNA diversity of mint resources from China. Afr. J. Biotechnol. 2011, 10, 16740–16745. [Google Scholar]
- Skaltsa, H.D.; Demetzos, C.; Lazari, D.; Sokovic, M. Essential oil analysis and antimicrobial activity of eight Stachys species from Greece. Phytochemistry 2003, 64, 743–752. [Google Scholar] [CrossRef]
- Riela, S.; Bruno, M.; Rosselli, S.; Saladino, M.L.; Caponetti, E.; Formisano, C.; Senatore, F. A study on the essential oil of Ferulago campestris: How much does extraction method influence the oil composition? J. Sep. Sci. 2011, 34, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Frizzo, C.D.; Atti-Serafini, L.; Laguna, S.E.; Cassel, E.; Lorenzo, D.; Dellacassa, E. Essential oil variability in Baccharis uncinella DC and Baccharis dracunculifolia DC growing wild in southern Brazil, Bolivia, and Uruguay. Flavour Fragr. J. 2008, 23, 99–106. [Google Scholar] [CrossRef]
- Hachicha, S.F.; Skanji, T.; Barrek, S.; Ghrabi, A.G.; Zarrouk, H. Composition of. the essential oil of Teucrium ramosissimum Desf. (Lamiaceae) from Tunisia. Flavour Fragr. J. 2007, 22, 101–104. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Demirci, B.; Özek, T.; Akalin, E.; Özhatay, N. Micro-distilled volatile compounds from Ferulago species growing in western Turkey. Pharm. Biol. 2002, 40, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Maggio, A.; Bruno, M.; Guarino, R.; Senatore, F.; Ilardi, V. Contribution to a Taxonomic Revision of the Sicilian Helichrysum Taxa by PCA Analysis of Their Essential-Oil Compositions. Chem. Biodivers. 2016, 13, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charoensiddhi, S.; Anprung, P. Bioactive compounds and volatile compounds of Thai bael fruit (Aegle marmelos (L.) Correa) as a valuable source for functional food ingredients. Int. Food Res. J. 2008, 15, 287–295. [Google Scholar]
- Arango, A.M.P.; Loaiza, L.M.R.; Cabra, J.L.R. Identificación de componentes químicos del aceite esencial de romero (Rosmarinus officinalis L.) proveniente de cultivos orgánicos en la zona alta andina. Rev. Colomb. Investig. Agroind. 2018, 5, 6–19. [Google Scholar] [CrossRef]
- Cozzani, S.; Muselli, A.; Desjobert, J.M.; Bernardini, A.F.; Tomi, F.; Casanova, J. Chemical composition of essential oil of Teucrium polium subsp. capitatum (L.) from Corsica. Flavour Fragr. J. 2005, 20, 436–441. [Google Scholar] [CrossRef]
- Cheraif, I.; Jannet, H.B.; Hammami, M.; Khouja, M.L.; Mighri, Z. Chemical composition and antimicrobial activity of essential oils of Cupressus arizonica Greene. Biochem. Syst. Ecol. 2007, 35, 813–820. [Google Scholar] [CrossRef]
- Patiño-Bayona, W.R.; Plazas, E.; Bustos-Cortes, J.J.; Prieto-Rodríguez, J.A.; Patiño-Ladino, O.J. Essential Oils of Three Hypericum Species from Colombia: Chemical Composition, Insecticidal and Repellent Activity Against Sitophilus zeamais Motsch.(Coleoptera: Curculionidae). Rec. Nat. Prod. 2021, 15, 111–121. [Google Scholar] [CrossRef]
- Amri, I.; Hamrouni, L.; Hanana, M.; Gargouri, S.; Fezzani, T.; Jamoussi, B. Chemical composition, physico-chemical properties, antifungal and herbicidal activities of Pinus halepensis Miller essential oils. Biol. Agric. Hortic. 2013, 29, 91–106. [Google Scholar] [CrossRef]
- Couladis, M.; Tzakou, O.; Stojanovic, D.; Mimica-Dukic, N.; Jancic, R. The essential oil composition of Salvia argentea L. Flavour Fragr. J. 2001, 16, 227–229. [Google Scholar] [CrossRef]
- Wannes, W.A.; Mhamdi, B.; Marzouk, B. GC comparative analysis of least essential oils from two Myrtle varieties at different phenological stages. Chromatographia 2009, 69, 145–150. [Google Scholar] [CrossRef]
- Özcan, M.; Akgül, A.; Başcr, K.H.C.; Özck, T.; Tabanca, N. Essential oil composition of sea fennel (Crithmum maritimum) form Turkey. Food Nahrung 2001, 45, 353–356. [Google Scholar] [CrossRef]
- Formisano, C.; Senatore, F.; Bancheva, S.; Bruno, M.; Maggio, A.; Rosselli, S. Volatile components of C. bracteata and C. pannonica subsp. pannonica growing wild in Croatia. Nat. Prod. Commun. 2010, 5, 1649–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solis-Quispe, L.; Tomaylla-Cruz, C.; Callo-Choquelvica, Y.; Solís-Quispe, A.; Rodeiro, I.; Hernández, I.; Pino, J.A. Chemical composition, antioxidant and antiproliferative activities of essential oil from Schinus areira L. and Minthostachys spicata (Benth.) Epl. grown in Cuzco, Peru. J. Essent. Oil Res. 2016, 28, 234–240. [Google Scholar] [CrossRef]
- Taarit, M.B.; Msaada, K.; Hosni, K.; Chahed, T.; Marzouk, B. Essential oil composition of Salvia verbenaca L. growing wild in Tunisia. J. Food Biochem. 2010, 34, 142–151. [Google Scholar] [CrossRef]
- Salinas, M.; Bec, N.; Calva, J.; Ramírez, J.; Andrade, J.M.; Larroque, C.; Armijos, C. Chemical composition and anticholinesterase activity of the essential oil from the Ecuadorian plant Salvia pichinchensis Benth. Rec. Nat. Prod. 2020, 14, 276–285. [Google Scholar] [CrossRef]
- Mazzoni, V.; Tomi, F.; Casanova, J. A daucane-type sesquiterpene from Daucus carota seed oil. Flavour Fragr. J. 1999, 14, 268–272. [Google Scholar] [CrossRef]
- Choi, H.S. Characterization of Citrus unshiu (C. unshiu Marcov. forma Miyagawa-wase) blossom aroma by solid-phase microextraction in conjunction with an electronic nose. J. Agric. Food Chem. 2003, 51, 418–442. [Google Scholar] [CrossRef]
- Padalia, R.C.; Verma, R.S.; Amit, C.; Velusamy, S.; Chanotiya, C.S. Essential oil composition of sixteen elite cultivars of Mentha from western Himalayan region, India. Maejo Int. J. Sci. Technol. 2013, 7, 83–93. [Google Scholar]
- Ferretti, G.; Maggi, F.; Tirillini, B. Essential oil composition of Hypericum richeri Vill. from Italy. Flavour Fragr. J. 2005, 20, 295–298. [Google Scholar] [CrossRef]
- Setzer, W.N.; Stokes, S.L.; Penton, A.F.; Takaku, S.; Haber, W.A.; Hansell, E.; McKerrow, J.H. Cruzain inhibitory activity of leaf essential oils of Neotropical Lauraceae and essential oil components. Nat. Prod. Commun. 2007, 2, 1203–1212. [Google Scholar] [CrossRef] [Green Version]
- Schepetkin, I.A.; Özek, G.; Özek, T.; Kirpotina, L.N.; Khlebnikov, A.I.; Quinn, M.T. Neutrophil Immunomodulatory Activity of (−)-Borneol, a Major Component of Essential Oils Extracted from Grindelia squarrosa. Molecules 2022, 27, 4897. [Google Scholar] [CrossRef] [PubMed]
- Paolini, J.; Muselli, A.; Bernardini, A.F.; Bighelli, A.; Casanova, J.; Costa, J. Thymol derivatives from essential oil of Doronicum corsicum L. Flavour Fragr. J. 2007, 22, 479–487. [Google Scholar] [CrossRef]
- Ali, A.; Tabanca, N.; Demirci, B.; Blythe, E.K.; Başer, K.E.M.A.L.; Khan, I.A. Chemical composition and biological activity of essential oils from four Nepeta species and hybrids against Aedes aegypti (L.) (Diptera: Culicidae). Rec. Nat. Prod. 2016, 10, 137–147. [Google Scholar]
- Bouhlel, C.; Dolhem, G.A.; Fernandez, X.; Antoniotti, S. Model study of the enzymatic modification of natural extracts: Peroxidase-based removal of eugenol from rose essential oil. J. Agric. Food Chem. 2012, 60, 1052–1058. [Google Scholar] [CrossRef]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1999, 503, 1–24. [Google Scholar] [CrossRef]
- Cavalli, J.F.; Tomi, F.; Bernardini, A.F.; Casanova, J. Composition and chemical variability of the bark oil of Cedrelopsis grevei H. Baillon from Madagascar. Flavour Fragr. J. 2003, 18, 532–538. [Google Scholar] [CrossRef]
- Kundakovic, T.; Fokialakis, N.; Kovacevic, N.; Chinou, I. Essential oil composition of A. lingulata and A. umbellate. Flavour Fragr. J. 2007, 22, 184–187. [Google Scholar] [CrossRef]
- Ennigrou, A.; Casabianca, H.; Laarif, A.; Hanchi, B.; Hosni, K. Maturation-related changes in phytochemicals and biological activities of the Brazilian pepper tree (Schinus terebinthifolius Raddi) fruits. S. Afr. J. Bot. 2017, 108, 407–415. [Google Scholar] [CrossRef]
- Montalván, M.; Peñafiel, M.A.; Ramírez, J.; Cumbicus, N.; Bec, N.; Larroque, C.; Gilardoni, G. Chemical composition, enantiomeric distribution, and sensory evaluation of the essential oils distilled from the Ecuadorian species Myrcianthes myrsinoides (Kunth) Grifo and Myrcia mollis (Kunth) dc.(Myrtaceae). Plants 2019, 8, 511. [Google Scholar] [CrossRef] [Green Version]
- Viljoen, A.M.; Kamatou, G.P.; Coovadia, Z.H.; Özek, T.; Başer, K.H.C. Rare sesquiterpenes from South African Pteronia species. S. Afr. J. Bot. 2010, 76, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Kacem, N.; Roumy, V.; Duhal, N.; Merouane, F.; Neut, C.; Christen, P.; Rhouati, S. Chemical composition of the essential oil from Algerian Genista quadriflora Munby and determination of its antibacterial and antifungal activities. Ind. Crops Prod. 2016, 90, 87–93. [Google Scholar] [CrossRef]
- Carroll, J.F.; Tabanca, N.; Kramer, M.; Elejalde, N.M.; Wedge, D.E.; Bernier, U.R.; Zhang, S. Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J. Vector Ecol. 2011, 36, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Calvopiña, K.; Malagón, O.; Capetti, F.; Sgorbini, B.; Verdugo, V.; Gilardoni, G. A New Sesquiterpene Essential Oil from the Native Andean Species Jungia rugosa Less (Asteraceae): Chemical Analysis, Enantiomeric Evaluation, and Cholinergic Activity. Plants 2021, 10, 2102. [Google Scholar] [CrossRef]
- Gavyar, P.; Amiri, H. Chemical composition of essential oil and antioxidant activity of Postia puberula, an endemic species from Iran. Acta Sci. Pol. Hortorum Cultus 2019, 18, 119–128. [Google Scholar] [CrossRef]
- Song, H.S.; Sawamura, M.; Ito, T.; Kawashimo, K.; Ukeda, H. Quantitative determination and characteristic flavour of Citrus junos (yuzu) peel oil. Flavour Fragr. J. 2020, 15, 245–250. [Google Scholar] [CrossRef]
- Xu, G.L.; Geng, D.; Xie, M.; Teng, K.Y.; Tian, Y.X.; Liu, Z.Z.; She, G.M. Chemical composition, antioxidative and anticancer activities of the essential oil: Curcumae rhizoma–Sparganii rhizoma, a traditional herb pair. Molecules 2015, 20, 15781–15796. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas, Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 10-1932633219. [Google Scholar]
- Cartuche, L.; Calva, J.; Valarezo, E.; Chuchuca, N.; Morocho, V. Chemical and Biological Activiy Profiling of Hedyosmum strigosum Todzia. Essential Oil, and Aromatic Native Shrub from Southern Ecuador. Plants 2022, 11, 2832. [Google Scholar] [CrossRef] [PubMed]
- Huong, B.V.; Anh, L.D.N.; Vuong, T.B. Chemical Composition of Essential Oils from Hedyosmum orientale. Chem. Nat. Compd. 2021, 57, 378–381. [Google Scholar] [CrossRef]
- Nurliyana, A.L.; Noorsiha, A. Volatile composition and antifungal properties of Chloranthus erectus leaves oil. Unravelling Nat. Treasures Secrets: Curr. Species Interest 2018, 16, 97. [Google Scholar]
- Cao, C.M.; Peng, Y.; Shi, Q.W.; Xiao, P.G. Chemical constituents and bioactivities of plants of chloranthaceae. Chem. Biodivers. 2008, 5, 219–238. [Google Scholar] [CrossRef]
- Stashenko, E.E.; Jaramillo, B.E.; Martínez, J.R. Comparación de la composición química y de la actividad antioxidante in vitro de los metabolitos secundarios volátiles de plantas de la familia Verbenaceae. Rev. Acad. Colomb. Cienc 2003, 27, 579–597. [Google Scholar]
- Guarín, O.D.; Barajas-Solano, A.F. Hidrodestilación asistida con microondas (MWHD) para la extracción de hidrolatos de plantas aromáticas. Rev. Politécnica 2015, 11, 51–55. [Google Scholar]
- Dickson, R.A.; Houghton, P.J.; Hylands, P.J. Antibacterial and antioxidant cassane diterpenoids from Caesalpinia benthamiana. Phytochemistry 2007, 68, 1436–1441. [Google Scholar] [CrossRef]
- Hani, I.B.; Mazura, M.P.; Juliza, M.; Fadzureena, J.; Vimala, S.; Farizan, N. In-vitro anti-inflammatory and antioxidant evaluation of leaf extract of Baeckea frutescens L. In Proceedings of the Seminar on Medicinal and Aromatic Plants: Harnessing the Tropical Herbal Heritage: Recent Advances in R&D and Commercialization; Forest Research Institute Malaysia: Kuala Lumpur, Malaysia, 2010. [Google Scholar]
- Van Vuuren, S.; Holl, D. Antimicrobial natural product research: A review from a South African perspective for the years 2009–2016. J. Ethnopharmacol 2017, 17, 236–252. [Google Scholar] [CrossRef] [PubMed]
- De Araújo, J.P.; do Amaral, W.; Alberton, M.D.; Paim, M.; Da Silva, L.E. Chemical Composition, Antibacterial Potential and Enzymatic Inhibition of the Hedyosmum brasiliense Mart-Chloranthaceae. In Produtos Naturais E Suas Aplicacoes: Da Comunidade Para o Laboratorio. Ed. Científica Digit. 2021, 1, 301–315. [Google Scholar]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperatura programmed gas-Liquid partition chromatography. J. Chromatogr 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Rhee, I.K.; van de Meent, M.; Ingkaninan, K.; Verpoorte, R. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. A 2001, 915, 217–223. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
N° | Compuesto | DB-5ms | HP-INNOWAx | |||||
---|---|---|---|---|---|---|---|---|
LRIa | LRIb | % ± SD | LRIa | LRIb | Ref | % ± SD | ||
1 | α-Thujene | 924 | 924 | 0.39 ± 0.03 | - | - | - | 0.01 ± 0.01 |
2 | α-Pinene | 932 | 932 | 5.84 ± 0.24 | 1024 | 1020 | [21] | 0.10 ± 0.01 |
3 | Camphene | 949 | 945 | 0.27 ± 0.02 | 1061 | 1060 | [22] | 0.32 ± 0.01 |
4 | Thuja-2,4(10)-diene | 953 | 953 | 0.81 ± 0.06 | 1105 | 1120 | [21] | 4.53 ± 0.49 |
5 | Sabinene | 973 | 969 | 7.05 ± 0.36 | 1119 | 1123 | [23] | 12.33 ± 0.32 |
6 | β-Pinene | 978 | 974 | 3.29 ± 0.21 | - | - | - | 0.27 ± 0.02 |
7 | Myrcene | 990 | 1003 | 1.25 ± 0.09 | 1144 | 1145 | [24] | 0.16 ± 0.01 |
8 | Unidentified | 993 | - | 0.15 ± 0.01 | - | - | - | 0.02 ± 0.01 |
9 | α-Phellandrene | 1009 | 1002 | 8.11 ± 0.41 | 1161 | 1160 | [25] | 10.84 ± 0.86 |
10 | α-Terpinene | 1018 | 1014 | 0.75 ± 0.04 | 1176 | 1178 | [24] | 0.81 ± 0.04 |
11 | o-Cymene | 1027 | 1022 | 6.62 ± 0.27 | 1185 | 1187 | [26] | 3.77 ± 0.01 |
12 | Limonene | 1030 | 1025 | 2.35 ± 0.16 | 1195 | 1193 | [27] | 3.13 ± 0.39 |
13 | β-Phellandrene | 1032 | 1025 | 0.43 ± 0.02 | - | - | - | 0.07 ± 0.01 |
14 | 1,8-Cineole | 1034 | 1026 | 6.62 ± 0.29 | 1202 | 1209 | [26] | 6.74 ± 0.16 |
15 | (Z)-β-Ocimene | 1037 | 1032 | 0.33 ± 0.02 | 1203 | 1245 | [28] | 0.07 ± 0.11 |
16 | (E)-β-Ocimene | 1047 | 1044 | 1.05 ± 0.03 | 1213 | 1263 | [29] | 0.17 ± 0.01 |
17 | ϒ-Terpinene | 1059 | 1054 | 4.13 ± 5.35 | 1236 | 1243 | [23] | 0.46 ± 0.01 |
18 | cis-Sabinene hydrate | 1074 | 1065 | 0.20 ± 0.03 | 1252 | 1450 | [30] | 1.41 ± 0.23 |
19 | Terpinolene | 1087 | 1086 | 0.29 ± 0.01 | 1267 | 1282 | [31] | 5.59 ± 1.25 |
20 | α-Campholenal | 1096 | 1122 | 1.61 ± 0.05 | 1268 | 1439 | [32] | 0.35 ± 0.01 |
21 | Linalool | 1105 | 1095 | 0.75 ± 0.02 | 1423 | 1553 | [26] | 1.49 ± 0.17 |
22 | Ment-2-en-1-ol -cis-p | 1107 | 1118 | 0.04 ± 0.01 | 1465 | 1571 | [32] | 0.25 ± 0.01 |
23 | trans-Sabinol | 1145 | 1137 | 0.04 ± 0.01 | - | - | - | 0.13 ± 0.01 |
24 | cis-Verbenol | 1148 | 1137 | 0.56 ± 0.02 | 1479 | 1663 | [32] | 0.91 ± 0.02 |
25 | trans-Verbenol | 1152 | 1140 | 1.43 ± 0.08 | 1483 | 1683 | [33] | 0.82 ± 0.02 |
26 | Citronellal | 1158 | 1148 | 0.99 ± 0.05 | 1479 | 1488 | [34] | 0.05 ± 0.01 |
27 | Borneol | 1174 | 1165 | 0.23 ± 0.02 | 1500 | 1721 | [35] | 0.05 ± 0.01 |
28 | Unidentified | 1180 | - | 0.49 ± 0.05 | - | - | - | 0.04 ± 0.01 |
29 | cis-Pinocamphone | 1183 | 1172 | 1.53 ± 0.11 | 1509 | 1530 | [36] | 0.10 ± 0.01 |
30 | Terpinen-4-ol | 1186 | 1174 | 1.06 ± 0.10 | 1516 | 1571 | [37] | 0.16 ± 0.01 |
31 | ϒ-Terpineol | 1203 | 1199 | 0.21 ± 0.01 | 1532 | 1696 | [38] | 0.25 ± 0.01 |
32 | Citronellol | 1236 | 1223 | 0.21 ± 0.02 | 1536 | 1597 | [39] | 2.63 ± 0.05 |
33 | Linalool acetate | 1255 | 1254 | 0.15 ± 0.01 | 1546 | 1548 | [37] | 0.10 ± 0.01 |
34 | Terpine-4-ol acetate | 1297 | 1299 | 0.79 ± 0.05 | 1552 | 1592 | [40] | 1.15 ± 0.03 |
35 | Myrtenyl acetate | 1315 | 1324 | 0.25 ± 0.02 | 1560 | 1707 | [41] | 0.44 ± 0.02 |
36 | α-Cubebene | 1346 | 1348 | 0.16 ± 0.01 | 1552 | 1547 | [28] | 0.24 ± 0.01 |
37 | Citronellyl acetate | 1356 | 1350 | 0.09 ± 0.01 | 1562 | 1582 | [28] | 0.13 ± 0.01 |
38 | α-Copaene | 1375 | 1374 | 0.75 ± 0.05 | 1568 | 1535 | [22] | 0.35 ± 0.01 |
39 | β-Bourbonene | 1382 | 1387 | 0.13 ± 0.01 | 1573 | 1552 | [22] | 0.54 ± 0.01 |
40 | Unidentified | 1385 | - | 0.03 ± 0.01 | - | - | - | 0.14 ± 0.02 |
41 | β-Cubebene | 1387 | 1387 | 0.40 ± 0.03 | 1594 | 1573 | [39] | 0.09 ± 0.01 |
42 | β-Elemene | 1389 | 1389 | 0.11 ± 0.01 | 1598 | 1600 | [42] | 1.41 ± 0.02 |
43 | E-Caryophyllene | 1417 | 1417 | 0.76 ± 0.09 | 1616 | 1612 | [43] | 0.75 ± 0.09 |
44 | β-Copaene | 1429 | 1430 | 0.44 ± 0.03 | 1625 | 1613 | [44] | 0.14 ± 0.01 |
45 | trans-Muurola-3,5-diene | 1449 | 1451 | 0.15 ± 0.01 | 1636 | 1746 | [37] | 0.22 ± 0.01 |
46 | α-Humulene | 1455 | 1452 | 0.36 ± 0.03 | 1655 | 1662 | [23] | 0.63 ± 0.01 |
47 | allo-Aromandendrene | 1459 | 1458 | 0.23 ± 0.02 | 1662 | 1661 | [45] | 0.80 ± 0.01 |
48 | cis-Muurola-4(14),5-diene | 1462 | 1465 | 0.17 ± 0.01 | 1676 | 1630 | [46] | 2.20 ± 0.03 |
49 | Dauca-5,8-diene | 1472 | 1471 | 0.17 ± 0.01 | 1683 | 1654 | [47] | 0.59 ± 0.01 |
50 | ϒ-Muurolene | 1476 | 1478 | 0.57 ± 0.04 | 1688 | 1689 | [28] | 0.83 ± 0.02 |
51 | ϒ-Curcumene | 1478 | 1481 | 1.02 ± 0.08 | 1695 | 1692 | [33] | 0.21 ± 0.01 |
52 | Germacrene-D | 1483 | 1480 | 17.80 ± 1.06 | 1702 | 1708 | [29] | 15.73 ± 0.25 |
53 | δ-Selinene | 1492 | 1492 | 0.52 ± 0.06 | 1711 | 1717 | [48] | 0.22 ± 0.01 |
54 | Bicyclogermacrene | 1496 | 1500 | 1.46 ± 0.14 | 1720 | 1727 | [49] | 0.33 ± 0.08 |
55 | epi-Cubebol | 1498 | 1493 | 0.36 ± 0.05 | 1727 | 1735 | [39] | 2.38 ± 0.13 |
56 | α-Muurolene | 1501 | 1500 | 0.51 ± 0.05 | 1745 | 1753 | [50] | 0.05 ± 0.01 |
57 | α-Bulnesene | 1510 | 1509 | 0.14 ± 0.04 | 1754 | 1505 | [51] | 2.15 ± 0.05 |
58 | δ-Cadinene | 1516 | 1522 | 0.40 ± 0.03 | 1767 | 1773 | [52] | 1.19 ± 0.03 |
59 | (E)-ϒ-Bisabolene | 1521 | 1529 | 2.88 ± 0.25 | 1772 | 1769 | [38] | 1.51 ± 0.03 |
60 | β-Curcumene | 1527 | 1527 | 1.07 ± 0.12 | 1787 | 1734 | [53] | 0.12 ± 0.04 |
61 | E-Isocroweacin | 1534 | 1553 | 0.33 ± 0.16 | - | - | - | 0.13 ± 0.01 |
62 | Unidentified | 1536 | - | 0.13 ± 0.02 | - | - | - | 0.12 ± 0.01 |
63 | α-Cadinene | 1540 | 1537 | 0.17 ± 0.01 | 1848 | 1807 | [54] | 0.07 ± 0.01 |
64 | Spathulenol | 1584 | 1577 | 0.53 ± 0.03 | 1855 | 2103 | [53] | 0.05 ± 0.01 |
65 | Viridiflorol | 1592 | 1592 | 0.24 ± 0.04 | 1884 | 1997 | [53] | 0.30 ± 0.01 |
66 | Caryophyllene oxide | 1594 | 1582 | 0.16 ± 0.14 | 1934 | 1925 | [55] | 0.45 ± 0.01 |
67 | Citronellyl pentanoate | 1599 | 1624 | 0.17 ± 0.10 | 1973 | 1880 | [56] | 0.07 ± 0.02 |
68 | Unidentified | 1603 | - | 0.03 ± 0.01 | 1996 | 2077 | [57] | 0.09 ± 0.02 |
69 | epi-Cubenol-1 | 1623 | 1627 | 0.18 ± 0.01 | 2004 | 2347 | [30] | 0.05 ± 0.01 |
70 | Dill apiole | 1633 | 1620 | 0.67 ± 0.03 | 2044 | 2384 | [42] | 0.17 ± 0.01 |
71 | epi-α-Cadinol | 1637 | 1638 | 0.23 ± 0.04 | 2057 | 2152 | [53] | 0.20 ± 0.01 |
72 | allo-Aromandendrene-epoxide | 1640 | 1639 | 0.27 ± 0.02 | 2065 | 2095 | [53] | 0.06 ± 0.01 |
73 | Vulgarone B | 1646 | 1649 | 0.63 ± 0.04 | 2086 | 2254 | [58] | 0.43 ± 0.01 |
74 | α-Cadinol | 1653 | 1652 | 0.43 ± 0.04 | 2112 | 2216 | [59] | 0.16 ± 0.01 |
75 | α-Muurolol | 1656 | 1644 | 0.34 ± 0.03 | 2123 | 2178 | [60] | 0.34 ± 0.01 |
76 | Intermedeol | 1658 | 1665 | 0.19 ± 0.02 | 2142 | 2264 | [61] | 0.19 ± 0.02 |
77 | Unidentified | 1667 | - | 0.90 ± 0.11 | - | - | - | 0.04 ± 0.01 |
78 | Eudesm-7(11)-en-4-ol | 1671 | 1700 | 0.07 ± 0.01 | 2193 | 2320 | [33] | 0.41 ± 0.01 |
79 | α-Germacra-4(15),5,10(14)-trien-1-ol | 1695 | 1685 | 0.10 ± 0.01 | 2197 | 1686 | [62] | 0.31 ± 0.01 |
80 | epi-Nootkatol | 1699 | 1699 | 0.38 ± 0.04 | 2199 | 2478 | [63] | 0.23 ± 0.01 |
81 | Amorpha-4,4-dien-2-ol | 1702 | 1700 | 0.19 ± 0.15 | 2204 | 1690 | [62] | 0.04 ± 0.01 |
82 | Shyobunol | 1704 | 1688 | 0.25 ± 0.04 | - | - | - | 1.07 ± 0.04 |
83 | Zizanal | 1710 | 1697 | 0.86 ± 0.09 | 2215 | 2450 | [64] | 0.36 ± 0.01 |
84 | Vetiselinenol | 1720 | 1730 | 0.07 ± 0.04 | 2215 | 2245 | [64] | 0.55 ± 0.02 |
85 | ar-Curcumen-15-al | 1726 | 1712 | 0.13 ± 0.02 | 2222 | 1756 | [62] | 0.21 ± 0.01 |
86 | E-Nuciferol | 1754 | 1754 | 0.11 ± 0.01 | 2225 | 1758 | [65] | 0.11 ± 0.01 |
87 | Xanthorrhizol | 1762 | 1751 | 0.24 ± 0.02 | - | - | - | 0.42 ± 0.01 |
88 | α-Sinensal | 1796 | 1755 | 0.16 ± 0.01 | 2198 | 1753 | [66] | 0.34 ± 0.02 |
89 | Vetivenic acid | 1810 | 1811 | 0.48 ± 0.04 | 2243 | 1792 | [67] | 0.10 ± 0.04 |
90 | Unidentified | 2056 | - | 0.49 ± 0.01 | - | - | - | 0.36 ± 0.01 |
Monoterpene hydrocarbons (%) | 51.29 | 43.43 | ||||||
Oxygenated monoterpenes (%) | 9.53 | 8.77 | ||||||
Sesquiterpene hydrocarbons (%) | 30.13 | 34.22 | ||||||
Oxygenated sesquiterpenes (%) | 1.50 | 2.39 | ||||||
Other compounds %) | 5.56 | 10.54 | ||||||
Total (%) | 98.01 | 99.35 |
Enantiomeric Compounds | LRIa | Enantiomeric Distribution | ee (%) ± SD |
---|---|---|---|
(+)-α-Pinene | 941 | 100.00 | 100 ± 0.01 |
(+)- Myrcene | 993 | 38.66 | 22.67 ± 0.31 |
(−)-Myrcene | 994 | 61.34 | |
(+)-α-Phellandrene | 1029 | 91.74 | 83.49 ± 0.01 |
(−)-α-Phellandrene | 1035 | 8.26 | |
(+)-Limonene | 1053 | 88.48 | 76.95 ± 20.46 |
(−)-Limonene | 1058 | 11.52 | |
(+)-o-Cymene | 1071 | 89.70 | 79.40 ± 3.41 |
(−)-o-Cymene | 1075 | 10.30 |
Microorganism | H. purpurascens EO | Positive Control a |
---|---|---|
MIC (µg/mL) | ||
Gram negative rods | ||
Escherichia coli | >4000 | 1.56 |
Pseudomonas aeruginosa | >4000 | 0.39 |
Gram positive cocci | ||
Enterococcus faecalis | 4000 | 0.78 |
Enterococcus faecium | 4000 | 0.39 |
Staphylococcus aureus | 1000 | 0.39 |
Yeast and sporulated fungi | ||
Candida albicans | >4000 | 0.098 |
Aspergillus niger | 1000 | 0.098 |
EO | ABTS | DPPH |
---|---|---|
SC50 (µg/mL—µM *) ± SD | ||
H. purpurascens | ||
56.38 ± 1.96 | - | |
Trolox | 29.09± 1.05 | 35.54 ± 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calva, J.; Cartuche, L.; Castillo, L.N.; Morocho, V. Biological Activities and Chemical Composition of Essential Oil from Hedyosmum purpurascens (Todzia)—An Endemic Plant in Ecuador. Molecules 2023, 28, 2366. https://doi.org/10.3390/molecules28052366
Calva J, Cartuche L, Castillo LN, Morocho V. Biological Activities and Chemical Composition of Essential Oil from Hedyosmum purpurascens (Todzia)—An Endemic Plant in Ecuador. Molecules. 2023; 28(5):2366. https://doi.org/10.3390/molecules28052366
Chicago/Turabian StyleCalva, James, Luis Cartuche, Leydy Nathaly Castillo, and Vladimir Morocho. 2023. "Biological Activities and Chemical Composition of Essential Oil from Hedyosmum purpurascens (Todzia)—An Endemic Plant in Ecuador" Molecules 28, no. 5: 2366. https://doi.org/10.3390/molecules28052366
APA StyleCalva, J., Cartuche, L., Castillo, L. N., & Morocho, V. (2023). Biological Activities and Chemical Composition of Essential Oil from Hedyosmum purpurascens (Todzia)—An Endemic Plant in Ecuador. Molecules, 28(5), 2366. https://doi.org/10.3390/molecules28052366