Profiling of Taxoid Compounds in Plant Cell Cultures of Different Species of Yew (Taxus spp.)
Abstract
:1. Introduction
2. Results
2.1. Growth Characteristics of Taxus spp. Cell Cultures
2.1.1. Callus Cell Cultures
2.1.2. Suspension Cell Cultures
2.2. Phytochemical Screening of the Cell Cultures of Taxus spp.
2.2.1. Structural Identification of Taxoids in Cell Cultures
2.2.2. Screening of Taxoids in the Cell Cultures of Various Yew Species, Provenance and Cultivation Conditions
2.2.3. Screening of Taxoids Released to Cultivation Medium
3. Discussion
- In most publications, studies were performed on relatively "young” cell cultures, 1-2 years after induction, while the content of secondary compounds may change in cell cultures during long-term cultivation.
- The majority of the studies, with rare exceptions, only focused on the analysis of a few industrially valuable 13-OH-hydroxylated compounds (paclitaxel, baccatin III); other groups of taxoids were not screened.
- Most studies were performed using cell cultures of one yew species only, which did not allow generalizing on potential trends of taxoid formation in the cell cultures of different Taxus species.
4. Materials and Methods
4.1. Plant Material
4.1.1. Callus Cell Cultures
4.1.2. Suspension Cell Cultures
4.2. Biochemical Analysis of the Cell Cultures
4.2.1. Sample Preparation for Taxoids Screening
4.2.2. UPLC–ESI-MS Analysis of Taxoids
4.2.3. Preparative Isolation of Taxoids from T. baccata Cell Culture
4.2.4. High-Resolution Mass Spectrometry
4.2.5. NMR Spectroscopy
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.-F.; Shi, Q.-W.; Dong, M.; Kiyota, H.; Gu, Y.-C.; Cong, B. Natural Taxanes: Developments Since 1828. Chem. Rev. 2011, 111, 7652–7709. [Google Scholar] [CrossRef] [PubMed]
- Lange, B.M.; Conner, C.F. Taxanes and taxoids of the genus Taxus—A comprehensive inventory of chemical diversity. Phytochemistry 2021, 190, 112829. [Google Scholar] [CrossRef] [PubMed]
- Baloglu, E.; Kingston, D.G.I. The Taxane Diterpenoids. J. Nat. Prod. 1999, 62, 1448–1472. [Google Scholar] [CrossRef] [PubMed]
- Appendino, G. The phytochemistry of the yew tree. Nat. Prod. Rep. 1995, 12, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Mikuła-Pietrasik, J.; Witucka, A.; Pakuła, M.; Uruski, P.; Begier-Krasińska, B.; Niklas, A.; Tykarski, A.; Książek, K. Comprehensive review on how platinum- and taxane-based chemotherapy of ovarian cancer affects biology of normal cells Cell. Mol. Life Sci. 2019, 76, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Amaya, C.; Luo, S.; Baigorri, J.; Baucells, R.; Smith, E.R.; Xu, X.-X. Exposure to low intensity ultrasound removes paclitaxel cytotoxicity in breast and ovarian cancer cells. BMC Cancer 2021, 21, 981. [Google Scholar] [CrossRef]
- Maloney, S.M.; Hoover, C.A.; Morejon-Lasso, L.V.; Prosperi, J.R. Mechanisms of Taxane Resistance. Cancers 2020, 12, 3323. [Google Scholar] [CrossRef]
- Galletti, E.; Magnani, M.; Renzulli, M.L.; Botta, M. Paclitaxel and docetaxel resistance: Molecular mechanisms and development of new generation taxanes. ChemMedChem 2007, 2, 920–942. [Google Scholar] [CrossRef]
- Kobayashi, J.; Shigemori, H.; Hosoyama, H.; Chen, Z.; Akiyama, S.; Naito, M.; Tsuruo, T. Multidrug resistance reversal activity of taxoids from Taxus cuspidata in KB-C2 and 2780AD cells. Jpn. J. Cancer Res. 2000, 91, 638–642. [Google Scholar] [CrossRef]
- Hasegawa, T.; Bai, J.; Dai, J.; Bai, L.; Sakai, J.; Nishizawa, S.; Bai, Y.; Kikuchi, M.; Abe, M.; Yamori, T.; et al. Synthesis and structure-activity relationships of taxuyunnanine C derivatives as multidrug resistance modulator in MDR cancer cells. Bioorg. Med. Chem. Lett. 2007, 17, 3722–3728. [Google Scholar] [CrossRef]
- Qayum, M.; Nisar, M.; Rauf, A.; Khan, I.; Kaleem, W.A.; Raza, M.; Karim, N.; Saleem, M.A.; Bawazeer, S.; Uysal, S.; et al. In-vitro and in-silico anticancer potential of taxoids from Taxus wallichiana Zucc. Biol. Futur. 2019, 70, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.K.; Pal, A.; Maulik, P.R.; Kaur, T.; Garg, A.; Khanuja, S.P. Taxoid from the needles of the Himalayan yew Taxus wallichiana with cytotoxic and immunomodulatory activities. Bioorg. Med. Chem. Lett. 2006, 16, 2446–2449. [Google Scholar] [CrossRef] [PubMed]
- Nisar, M.; Khan, I.; Simjee, S.U.; Gilani, A.H.; Obaidullah; Perveen, H. Anticonvulsant, analgesic and antipyretic activities of Taxus wallichiana Zucc. J. Ethnopharmacol. 2008, 116, 490–494. [Google Scholar] [CrossRef]
- Tong, J.; Lu, J.; Zhang, N.; Chi, H.; Yamashita, K.; Manabe, M.; Kodama, H. Effect of seven tricyclic diterpenoids from needles of Taxus media var. Hicksii on stimulus-induced superoxide generation, tyrosyl or serine/threonine phosphorylation and translocation of cytosolic compounds to the cell membrane in human neutrophils. Planta Med. 2009, 75, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Polonio, T.; Efferth, T. Leishmaniasis: Drug resistance and natural products (review), Int. J. Mol. Med. 2008, 22, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Binwal, M.; Babu, V.; Israr, K.M.M.; Kashyap, P.K.; Maurya, A.K.; Padalia, R.C.; Tandon, S.; Bawankule, D.U. Taxoids-rich extract from Taxus wallichiana alleviates high-fat diet-induced insulin resistance in C57BL/6 mice through inhibition of low-grade inflammation. Inflammopharmacology 2023, 3, 451–464. [Google Scholar] [CrossRef]
- Dang, P.H.; Nguyen, H.X.; Duong, T.T.T.; Tran, T.K.T.; Nguyen, P.T.; Vu, T.K.T.; Vuong, H.C.; Phan, N.H.T.; Nguyen, M.T.T.; Nguyen, N.T.; et al. α-Glucosidase Inhibitory and Cytotoxic Taxane Diterpenoids from the Stem Bark of Taxus wallichiana. J. Nat. Prod. 2017, 80, 1087–1095. [Google Scholar] [CrossRef]
- Qayum, M.; Nisar, M.; Shah, M.R.; Adhikari, A.; Kaleem, W.A.; Khan, I.; Khan, N.; Gul, F.; Khan, I.A.; Zia-Ul-Haq, M.; et al. Analgesic and antiinflammatory activities of taxoids from Taxus wallichiana Zucc. Phytother. Res. 2012, 26, 552–556. [Google Scholar] [CrossRef]
- Sharma, H.; Garg, M. A review of traditional use, phytoconstituents and biological activities of Himalayan yew, Taxus wallichiana. J. Integr. Med. 2015, 13, 80–90. [Google Scholar] [CrossRef]
- Küpeli, E.; Erdemoğlu, N.; Yeşilada, E.; Sener, B. Anti-inflammatory and antinociceptive activity of taxoids and lignans from the heartwood of Taxus baccata L. J. Ethnopharmacol. 2003, 89, 265–270. [Google Scholar] [CrossRef]
- Nosov, A.M.; Popova, E.V.; Kochkin, D.V. Isoprenoid Production via Plant Cell Cultures: Biosynthesis, Accumulation and Scaling-Up to Bioreactors. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology; Paek, K.-Y., Murthy, H.N., Zhong, J.J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 563–623. [Google Scholar] [CrossRef]
- Fu, C.; Li, L.; Wu, W.; Li, M.; Yu, X.; Yu, L. Assessment of genetic and epigenetic variation during long-term Taxus cell culture. Plant Cell Rep. 2012, 3, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Madhusudanan, K.P.; Chattopadhyay, S.K.; Tripathi, V.K.; Sashidhara, K.V.; Kukreja, A.K.; Jain, S.P. LC-ESI-MS analysis of taxoids from the bark of Taxus wallichiana. Biomed. Chromatogr. 2002, 16, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Madhusudanan, K.P.; Chattopadhyay, S.K.; Tripathi, V.; Sashidhara, K.V.; Kumar, S. MS/MS profiling of taxoids from the needles of Taxus wallichiana. Phytochem. Anal. 2002, 13, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Kochkin, D.V.; Galishev, B.A.; Titova, M.V.; Popova, E.V.; Nosov, A.M. Chromato-Mass-Spectrometric Identification of Glycosides of Phenylethylamides of Hydroxycinnamic Acids in a Suspension Cell Culture of Mandragora turcomanica. Rus. J. Plant Physiol. 2021, 68, 973–980. [Google Scholar] [CrossRef]
- Bai, J.; Kitabatake, M.; Toyoizumi, K.; Fu, L.; Zhang, S.; Dai, J.; Sakai, J.; Hirose, K.; Yamori, T.; Tomida, A.; et al. Production of Biologically Active Taxoids by a Callus Culture of Taxus cuspidata. J. Nat. Prod. 2004, 67, 58–63. [Google Scholar] [CrossRef]
- Bai, J.; Ito, N.; Sakai, J.; Kitabatake, M.; Fujisawa, H.; Bai, L.; Dai, J.; Zhang, S.; Hirose, K.; Tomida, A.; et al. Taxoids and Abietanes from Callus Cultures of Taxus cuspidata. J. Nat. Prod. 2005, 68, 497–501. [Google Scholar] [CrossRef]
- Zhao, C.F.; Yu, L.J.; Li, L.Q.; Xiang, F. Simultaneous identification and determination of major taxoids from extracts of Taxus chinensis cell cultures. Z. Naturforsch. C J. Biosci. 2007, 62, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Stahlhut, R.W.; Adams, T.L.; Park, G.L.; Evans, W.A.; Blumenthal, S.G.; Gomez, G.A.; Nieder, M.H.; Hylands, P.J. Yunnanxane and its homologous esters from cell cultures of Taxus chinensis var. Mairei. J. Nat. Prod. 1994, 57, 1320–1324. [Google Scholar] [CrossRef]
- Furmanowa, M.; Glowniak, K.; Syklowska-Baranek, K.; Zgórka, G.; Józefczyk, A. Effect of picloram and methyl jasmonate on growth and taxane accumulation in callus culture of Taxus × media var. Hatfieldii. Plant Cell Tiss. Organ Cult. 1997, 49, 75–79. [Google Scholar] [CrossRef]
- Kochkin, D.V.; Galishev, B.A.; Glagoleva, E.S.; Titova, M.V.; Nosov, A.M. Rare triterpene glycoside of ginseng (ginsenoside malonyl-Rg1) detected in plant cell suspension culture of Panax japonicus var. repens. Rus. J. Plant Physiol. 2017, 64, 649–656. [Google Scholar] [CrossRef]
- Fedoreyev, S.A.; Vasilevskaya, N.A.; Veselova, M.V.; Denisenko, V.A.; Dmitrenok, P.S.; Ozhigova, I.T.; Muzarok, T.I.; Zhuravlev, Y.N. A new C-14 oxygenated taxane from Taxus cuspidata cell culture. Fitoterapia 1998, 69, 430–432. [Google Scholar]
- Li, F.L.; Ma, X.J.; Hu, X.L.; Hoffman, A.; Dai, J.G.; Qiu, D. Antisense-induced suppression of taxoid 14b-hydroxylase gene expression in transgenic Taxus x media cells. Afr. J. Biotechnol. 2011, 10, 8720–8728. [Google Scholar] [CrossRef]
- Agrawal, S.; Banerjee, S.; Chattopadhyay, S.K.; Kulshrestha, M.; Madhusudanan, K.P.; Mehta, V.K.; Kumar, S. Isolation of taxoids from cell suspension cultures of Taxus wallichiana. Planta Med. 2000, 66, 773–775. [Google Scholar] [CrossRef] [PubMed]
- Fornalè, S.; Esposti, D.D.; Navia-Osorio, A.; Cusidò, R.M.; Palazòn, J.; Teresa Piñol, M.; Bagni, N. Taxol transport in Taxus baccata cell suspension cultures. Plant Physiol. Biochem. 2002, 40, 81–88. [Google Scholar] [CrossRef]
- Christen, A.A.; Bland, J.; Gibson, D.M. Cell cultures as a means to produce taxol. Proc. Am. Assoc. Cancer Res. 1989, 30, 566. [Google Scholar]
- Kim, B.J.; Gibson, D.M.; Shuler, M.L. Relationship of viability and apoptosis to taxol production in Taxus sp. suspension cultures elicited with methyl jasmonate. Biotechnol. Prog. 2005, 21, 700–707. [Google Scholar] [CrossRef]
- Gai, Q.-Y.; Jiao, J.; Wang, X.; Liu, J.; Fu, Y.-J.; Lu, Y.; Wang, Z.-Y.; Xu, X.-J. Simultaneous determination of taxoids and flavonoids in twigs and leaves of three Taxus species by UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2020, 189, 113456. [Google Scholar] [CrossRef]
- Wilson, A.E.; Tian, L. Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. Plant J. 2019, 100, 1273–1288. [Google Scholar] [CrossRef]
- Mei, M.; Xie, D.; Zhang, Y.; Jin, J.; You, F.; Li, Y.; Dai, J.; Chen, X. A New 2α,5α,10β,14β-tetraacetoxy-4(20),11-taxadiene (SIA) Derivative Overcomes Paclitaxel Resistance by Inhibiting MAPK Signaling and Increasing Paclitaxel Accumulation in Breast Cancer Cells. PLoS ONE 2014, 9, e104317. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, R.; Xie, D.; Mei, M.; Zou, J.; Chen, X.; Dai, J. Microbial transformations of taxadienes and the multi-drug resistant tumor reversal activities of the metabolites. Tetrahedron 2012, 68, 9539–9549. [Google Scholar] [CrossRef]
- Hayakawa, K.; Itoh, T.; Niwa, H.; Mutoh, T.; Sobue, G. NGF prevention of neurotoxicity induced by cisplatin, vincristine and taxol depends on toxicity of each drug and NGF treatment schedule: In vitro study of adult rat sympathetic ganglion explants. Brain Res. 1998, 794, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Globa, E.B.; Demidova, E.V.; Turkin, V.V.; Makarova, S.S.; Nosov, A.M. Callus and suspension cell culture induction of four yew species: Taxus canadensis, T. baccata, T. cuspidata and T. media. Biotechnology 2009, 3, 54–59. (In Russian) [Google Scholar]
- Globa, E.B.; Demidova, E.V.; Gaysinskiy, V.V.; Kochkin, D.V. Obtainment and characterization of callus and suspension cell culture of Taxus wallichiana Zucc. Vestn. Severo-Vostochn. Fed. Univ. M.K. Ammosova. 2018, 2, 18–25. (In Russian) [Google Scholar] [CrossRef]
- Nosov, A.M. Methods of evaluation and characterization of growth of cell cultures of higher plants. In Molecular-Genetic and Biochemical Methods in Modern Plant Biology; Kuznetsov, V.V., Ed.; BIONOM: Moscow, Russia, 2011; pp. 386–403. (In Russian) [Google Scholar]
- Demidova, E.V.; Reshetnyak, O.V.; Oreshnikov, A.V.; Nosov, A.M. Growth and biosynthetic characteristics of ginseng (Panax japonicus var. repens) deep-tank cell culture in bioreactors. Rus. J. Plant Physiol. 2006, 53, 134–140. [Google Scholar] [CrossRef]
- Povydysh, M.N.; Titova, M.V.; Ivanov, I.M.; Klushin, A.G.; Kochkin, D.V.; Galishev, B.A.; Popova, E.V.; Ivkin, D.Y.; Luzhanin, V.G.; Krasnova, M.V.; et al. Effect of Phytopreparations Based on Bioreactor-Grown Cell Biomass of Dioscorea deltoidea, Tribulus terrestris and Panax japonicus on Carbohydrate and Lipid Metabolism in Type 2 Diabetes Mellitus. Nutrients 2021, 13, 3811. [Google Scholar] [CrossRef]
- Belyakov, P.A.; Kadentsev, V.I.; Chizhov, A.O.; Kolotyrkina, N.y.G.; Shashkov, A.S.; Ananikov, V.P. Mechanistic insight into organic and catalytic reactions by joint studies using mass spectrometry and NMR spectroscopy. Mend. Commun. 2010, 20, 125–131. [Google Scholar] [CrossRef]
Species and Donor Plant Location | Cell Line */ Initiation Medium (Im) | Maintenance Medium | Fresh Weight Gain ± s.d. |
---|---|---|---|
Taxus × media cv. Dovastaniana Botanical garden of Moscow State University | TmD-msu/W-DK | Im (W-DK) B5-NB R-PB-ac | 3.1 ± 0.8 8.4 ± 0.1 2.6 ± 0.2 |
Taxus × media cv. Aureovariegata Botanical garden of Moscow State University | TmA-msu/B5-NB | Im (B5-NB) | <1.1 |
B5-NB-pvp | <1.1 | ||
TmA-msu/R-PB-ac | Im (R-PB-ac) | 3.4 ± 0.1 | |
TmA-msu/R-NB-ac | Im (R-NB-ac) | 8.0 ± 0.1 | |
TmA-msu/R-DK-pvp | Im (R-DK-pvp) | 6.5 ± 1.6 | |
Taxus baccata Botanical garden of Moscow State University | Tb-msu/B5-NB | Im (B5-NB) B5-NB-pvp Im (B5-NB)→susp→Im | <1.1 <1.1 4.9 ± 0.6 |
Tb-msu/B5-PB | Im (B5-PB) | <1.1 | |
B5-PB-pvp | <1.1 | ||
Tb-msu/B5-DK | Im (B5-DK) | <1.1 | |
B5-DK-pvp | <1.1 | ||
Tb-msu/R-PB-ac | Im (R-PB-ac) | <1.1 | |
Im (R-PB-ac)→susp→Im | 1.7 ± 0.4 | ||
Tb-msu/R-NB-ac | Im (R-NB-ac) | <1.1 | |
Tb-msu/R-NB-pvp | Im (R-NB-pvp) | <1.1 | |
Taxus baccata Nikitsky botanical garden (Crimea) | Tb-nbg/B5-NB | Im (B5-NB) | 3.3 ± 0.8 |
Tb-nbg/B5-PB | Im (B5-PB) | <1.1 | |
Tb-nbg/B5-DK-ac | Im (B5-DK-ac) | 8.2 ± 2.8 | |
Tb-nbg/B5-PB-ac | Im (B5-PB-ac) | 1.6 ± 0.2 | |
Tb-nbg/R-PB-ac | Im (R-PB-ac) | 3.7 ± 0.3 | |
B5-PB-ac | 7.5 ± 0.5 | ||
B5-PB | 1.7 ± 0.8 | ||
Tb-nbg/R-NB-ac | Im (R-NB-ac) | 3.2 ± 0.4 | |
B5-PB | <1.1 | ||
B5-PB-ac | 9.1 ± 0.6 | ||
Tb-nbg/R-DK-pvp | Im (R-DK-pvp) | 1.2 ± 0.1 | |
Tb-nbg/R-NB-pvp | Im (R-NB-pvp) | 3.6 ± 1.9 | |
Tb-nbg/R-DK-ac | Im (R-DK-ac) | 4.5 ± 0.9 | |
Taxus canadensis Botanical garden of Moscow State University | Tc-msu/R-PB-pvp | Im (R-PB-pvp) | 2.8 ± 0.3 |
Im (R-PB-pvp)→susp→Im | 1.5 ± 0.1 | ||
Taxus wallichiana Botanical garden of Belarus Academy of Sciences | Tw-bbg/B5-NB-pvp | Im (B5-NB-pvp) | 4.1 ± 0.2 |
Line | Mmax (g/L) | I | μmax (day−1) | T (day) | Y | P (g/L Day) |
---|---|---|---|---|---|---|
Tb-msu/B5-PB-pvp, flask | 9.2 | 5.8 | 0.22 | 3.1 | 0.30 | 0.36 |
Tb-msu/B5-NB, flask | 11.3 | 8.1 | 0.20 | 3.4 | 0.38 | 0.42 |
Tb-msu/B5-NB, bioreactor | 13.0 | 7.2 | 0.20 | 3.4 | 0.43 | 0.55 |
Peak No. | tR, Min | [M + NH4]+, m/z | [M + Na]+, m/z | [M + K]+, m/z | Fragment Ions, m/z | Elemental Composition | Identification | |||
---|---|---|---|---|---|---|---|---|---|---|
Exp. * | Calc. * | Exp. | Calc. | Exp. | Calc. | |||||
1 | 3.7 | 538. 3062 | 538. 3016 | 543. 2529 | 543. 2570 | 559. 2319 | 559. 2309 | 461.2519; 401.2310; 359.2278; 341.2111; 299.1985; 281.1903; 263.1849 | C28H40O9 | 7-Hydroxy-2,5,10,14-tetra- acetoxy-taxadiene |
2 | 5.0 | 580. 3130 | 580. 3122 | 585. 2744 | 585. 2676 | 601. 2397 | 601. 2415 | 503.2673; 461.2498; 443.2375; 401.2319; 383.2209; 359.2213; 341.2102; 323.2006; 299.2037; 281.1903; 263.1767; 253.1957 | C30H42O10 | 2,5,9,10,14-Penta-acetoxy- taxadiene |
3 | 5.3 | 580. 3447 | 580. 3486 | 585. 2991 | 585. 3040 | 601. 2791 | 601. 2779 | 503.2989; 461.2935; 401.2885; 385.2409; 343.2278; 325.2160; 283.2061; 265.1956 | C31H46O9 | Yunnanxane |
4 | 5.9 | 522. 3033 | 522. 3067 | 527. 2594 | 527. 2621 | 543. 2376 | 543. 2360 | 445.2578; 403.2489; 385.2387; 343.2321; 325.2183; 283.2072; 265.1946 | C28H40O8 | Taxuyunnanine C |
5 | 9.0 | 622. 3594 | 622.3591 | 627. 3124 | 627. 3145 | 643. 2960 | 643. 2885 | 503.2976; 443.2478; 401.2302; 383.2262; 341.2102; 323.1978; 281.1893; 263.1836; 253.1904 | C33H48O10 | Taxuyunnanine B |
6 | 10.7 | 564. 3470 | 564. 3536 | 569. 3086 | 569. 3090 | 585. 2853 | 585. 2830 | 487.4061; 469.2935; 445.2933; 427.2852; 325.2157; 283.2042; 265.1919; 255.2110 | C31H46O8 | Sinenxane C |
Peak No. | tR, Min | [M + NH4]+, m/z | [M + Na]+, m/z | [M + K]+, m/z | Fragment Ions, m/z | Elemental Composition | Identification | |||
---|---|---|---|---|---|---|---|---|---|---|
Exp. * | Calc. * | Exp. | Calc. | Exp. | Calc. | |||||
1 | 3.7 | 538. 2882 | 538. 3016 | 543. 2548 | 543. 2570 | 559. 2460 | 559. 2309 | 461.2505; 401.2343; 299.1857; 281.1884 | C28H40O9 | 7-Hydroxy-2,5,10,14-tetra- acetoxy-taxadiene |
2 | 5.0 | 580. 3076 | 580. 3122 | 585. 2753 | 585. 2676 | 601.2474 | 601. 2415 | 461.2549; 443.2408; 401.2318; 383.2212; 359.2234; 341.2069; 323.1993; 299.1989; 281.1774; 263.1734 | C30H42O10 | 2,5,9,10,14-Penta-acetoxy- taxadiene |
3 | 5.3 | 580. 3441 | 580. 3486 | 585. 2919 | 585. 3040 | 601. 2843 | 601. 2779 | 503.3022; 461.2924; 385.2391; 343.2255; 325.2200; 283.2014; 265.1931 | C31H46O9 | Yunnanxane |
4 | 5.9 | 522. 2980 | 522. 3067 | 527. 2594 | 527. 2606 | 543. 2376 | 543. 2335 | 445.2589; 403.2479; 385.2302; 343.2222; 325.2097; 283.1939; 265.1988 | C28H40O8 | Taxuyunnanine C |
5 | 7,4 | 536. 3209 | 536. 3223 | 541. 2850 | 541. 2702 | 557. 2466 | 557. 2517 | 441.2720; 417.2695; 385.2421; 343.2316; 325.2180; 283.2086; 265.1936 | C29H42O8 | Sinenxane B |
6 | 8.9 | 550. 3374 | 550. 3380 | 555. 2829 | 555. 2934 | 571. 2705 | 571. 2632 | 445.2998; 431.2837; 385.2393; 343.2289; 325.2186; 283.2039; 265.1943 | C30H44O8 | 2,5,10-Triacetoxy-14-(iso-butyryloxy)-taxadiene |
7 | 9.0 | 622. 3586 | 622. 3591 | 627. 3124 | 627. 3128 | 643. 2960 | 643. 2954 | 503.2985; 443.2540; 401.2372; 383.2262; 341.2217; 323.2025; 281.1904; 263.1782; 253.1917 | C33H48O10 | Taxuyunnanine B |
8 | 10.6 | 564. 3470 | 564. 3407 | 569. 3086 | 569. 3076 | 585. 2853 | 585. 2827 | 487.3022; 469.2929; 445.2925; 427.2793; 385.2319; 343.2233; 325.2115; 283.1945; 265.1841; 255.2095 | C31H46O8 | Sinenxane C |
Species/ Donor Tree Location | Cell Line/Initiation Medium (Im) | Variant or Growth Medium | No. of Subcultivation | Days of Subcultivation | Detected Taxoids * | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||||
T. × media cv. Dovastaniana/ MSU botanical garden | TmD-msu /W-DK | Im (W-DK) | 53 | 74 | ||||||||
B5-NB | 51 | 126 | ||||||||||
52 | 91 | |||||||||||
R-PB-ac | 47 | 74 | ||||||||||
T. × media cv. Aureovariegata/ MSU botanical garden | TmA-msu /B5-NB | Im (B5-NB) | 42 | 57 | ||||||||
45 | 126 | |||||||||||
TmA-msu /R-PB-ac | Im (R-PB-ac) | 42 | 73 | |||||||||
47 | 74 | |||||||||||
TmA-msu /R-NB-ac | Im (R-NB-ac) | 42 | 73 | |||||||||
47 | 74 | |||||||||||
TmA-msu/R- DK-pvp | Im (R-DK- pvp) | 43 | 37 | |||||||||
47 | 70 | |||||||||||
T. baccata/ MSU botanical garden | Tb-msu/B5-NB | Im→susp→ →Im (B5-NB) | 8 (41) | 50 | ||||||||
10 (43) | 34 | |||||||||||
10 (43) | 126 | |||||||||||
Tb-msu /R-PB-ac | Im (R-PB-ac) | 37 | 50 | |||||||||
Im→susp→ →Im (R-PB-ac) | 8 (41) | 43 | ||||||||||
Tb-msu/R-NB-ac | Im (R-NB-ac) | 44 | 31 | |||||||||
Tb-msu/R-NB-pvp | Im (R-NB-pvp) | 42 | 70 | |||||||||
T. baccata/ Nikitski botanical garden (Crimea) | Tb-nbg/B5-NB | Im (B5-NB) | 36 | 70 | ||||||||
37 | 24 | |||||||||||
39 | 126 | |||||||||||
40 | 91 | |||||||||||
Tb-nbg/B5-PB | Im (B5-PB) | 41 | 96 | |||||||||
Tb-nbg/B5-DK-ac | Im (B5-DK-ac) | 36 | 73 | |||||||||
44 | 80 | |||||||||||
Tb-nbg/B5-PB-ac | Im (B5-PB-ac) | 37 | 70 | |||||||||
38 | 37 | |||||||||||
44 | 80 | |||||||||||
Tb-nbg/R-PB-ac | Im (R-PB-ac) | 37 | 24 | |||||||||
37 | 70 | |||||||||||
40 | 136 | |||||||||||
41 | 61 | |||||||||||
B5-PB-ac | 42 | 74 | ||||||||||
Tb-nbg/R-NB-ac | Im (R-NB-ac) | 44 | 80 | |||||||||
B5-PB-ac | 36 | 70 | ||||||||||
42 | 74 | |||||||||||
Tb-nbg/R-DK- pvp | Im (R-DK- pvp) | 42 | 70 | |||||||||
Tb-nbg/R-DK-ac | Im (R-DK-ac) | 38 | 37 | |||||||||
44 | 80 | |||||||||||
Taxus canadensis/ MSU botanical garden | Tc-msu/R-PB- pvp | Im (R-PB-pvp) | 42 | 70 | ||||||||
Im→susp→ →Im (R-PB-pvp) | 10 (43) | 70 | ||||||||||
13 (46) | 136 | |||||||||||
14 (47) | 70 | |||||||||||
Taxus Wallichiana | Tb-bbg/B5-NB-pvp | Im (B5-NB-pvp) | 5 | 91 |
Species/Cell Line | Growth Medium | No. of Subcultivation | Days of Subcultivation | Detected Taxoids * | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||
T. × media cv. Aureovariegata/TmA-msu/B5-NB | Im (B5-NB) | 70 | 27 | ||||||||
78 | 27 | ||||||||||
90 | 33 | ||||||||||
B5-NB-pvp | 78 | 27 | |||||||||
90 | 33 | ||||||||||
T. baccata/ Tb-msu/B5-NB | Im (B5-NB) | 70 | 21 | ||||||||
83 | 27 | ||||||||||
84 | 21 | ||||||||||
91 | 21 | ||||||||||
B5-NB-pvp | 91 | 21 | |||||||||
T. baccata/ Tb-msu/B5-PB | Im (B5-PB) | 81 | 27 | ||||||||
85 | 21 | ||||||||||
B5-PB-pvp | 81 | 27 | |||||||||
90 | 33 | ||||||||||
T. baccata/ Tb-msu/B5-DK | Im (B5-DK) | 83 | 27 | ||||||||
91 | 27 | ||||||||||
B5-DK-pvp | 83 | 27 | |||||||||
91 | 21 | ||||||||||
T.wallichiana/ Tw-nbb/B5-NB-pvp | Im (B5-NB-pvp) | 21 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochkin, D.V.; Demidova, E.V.; Globa, E.B.; Nosov, A.M. Profiling of Taxoid Compounds in Plant Cell Cultures of Different Species of Yew (Taxus spp.). Molecules 2023, 28, 2178. https://doi.org/10.3390/molecules28052178
Kochkin DV, Demidova EV, Globa EB, Nosov AM. Profiling of Taxoid Compounds in Plant Cell Cultures of Different Species of Yew (Taxus spp.). Molecules. 2023; 28(5):2178. https://doi.org/10.3390/molecules28052178
Chicago/Turabian StyleKochkin, Dmitry V., Elena V. Demidova, Elena B. Globa, and Alexander M. Nosov. 2023. "Profiling of Taxoid Compounds in Plant Cell Cultures of Different Species of Yew (Taxus spp.)" Molecules 28, no. 5: 2178. https://doi.org/10.3390/molecules28052178
APA StyleKochkin, D. V., Demidova, E. V., Globa, E. B., & Nosov, A. M. (2023). Profiling of Taxoid Compounds in Plant Cell Cultures of Different Species of Yew (Taxus spp.). Molecules, 28(5), 2178. https://doi.org/10.3390/molecules28052178