Total Synthesis of Hemerocallisamine I Paved by Gram-Scale Synthesis of (2S,4S)-4-Hydroxyglutamic Acid Lactone
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of (±)-hemerocallisamine I and Optimization of the Maillard Reaction Step
2.2. Synthesis of (–)-hemerocallisamine I
3. Materials and Methods
3.1. General Experimental Details
3.2. Synthesis and Characterization of Compounds
3.2.1. 2-Amino-4-(4-methoxyphenyl)-4-oxobutanoic acid (9)
3.2.2. (3S*,5S*)-3-Amino-5-(4-methoxyphenyl)dihydrofuran-2(3H)-one (rac-10)
3.2.3. (2S*,4S*)-4-((tert-Butoxycarbonyl)amino)-5-oxotetrahydrofuran-2-carboxylic acid (rac-7)
3.2.4. (2S*,4S*)-4-Amino-N-(4-methoxybenzyl)-5-oxotetrahydrofuran-2-carboxamide (rac-11)
3.2.5. (2S*,4S*)-4-(2-(((tert-Butyldimethylsilyl)oxy)methyl)-5-formyl-1H-pyrrol-1-yl)-N-(4-methoxybenzyl)-5-oxotetrahydrofuran-2-carboxamide (rac-8)
3.2.6. (2S*,4S*)-4-(2-Formyl-5-(methoxymethyl)-1H-pyrrol-1-yl)-N-(4-methoxybenzyl)-5-oxotetrahydrofuran-2-carboxamide (rac-13)
3.2.7. (±)-Hemerocallisamine I, (2S*,4S*)-1
3.2.8. (S)-4-(4-Methoxyphenyl)-2-(((S)-1-(4-methoxyphenyl)ethyl)amino)-4-oxobutanoic acid, (S,S)-15
3.2.9. (S)-1-Carboxy-3-(4-methoxyphenyl)-3-oxopropan-1-aminium 2,2,2-trifluoroacetate, (S)-9∙TFA
3.2.10. (3S,5S)-3-Amino-5-(4-methoxyphenyl)dihydrofuran-2(3H)-one, (S,S)-10
3.2.11. (2S,4S)-4-((tert-Butoxycarbonyl)amino)-5-oxotetrahydrofuran-2-carboxylic acid, (S,S)-7
3.2.12. (2S,4S)-4-Amino-N-(4-methoxybenzyl)-5-oxotetrahydrofuran-2-carboxamide, (S,S)-11
3.2.13. (2S,4S)-4-(2-(((tert-Butyldimethylsilyl)oxy)methyl)-5-formyl-1H-pyrrol-1-yl)-N-(4-methoxybenzyl)-5-oxotetrahydrofuran-2-carboxamide, (S,S)-8
3.2.14. (2S,4S)-4-(2-Formyl-5-(methoxymethyl)-1H-pyrrol-1-yl)-N-(4-methoxybenzyl)-5-oxotetrahydrofuran-2-carboxamide, (S,S)-13
3.2.15. (–)-Hemerocallisamine I, (S,S)-1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plants of the World Online (POWO). Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:24324-1 (accessed on 31 January 2023).
- American Daylily Society. Available online: https://daylilydatabase.org/ (accessed on 31 January 2023).
- Tai, C.-Y.; Chen, B.H. Analysis and Stability of Carotenoids in the Flowers of Daylily (Hemerocallis disticha) as Affected by Various Treatments. J. Agric. Food Chem. 2000, 48, 5962–5968. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, S.; Cui, J.; Qin, X.; Zhang, G. Progress of genus Hemerocallis in traditional uses, phytochemistry, and pharmacology. J. Hortic. Sci. Biotechnol. 2022, 97, 298–314. [Google Scholar] [CrossRef]
- Matraszek-Gawron, R.; Chwil, M.; Terlecka, P.; Skoczylas, M.M. Recent Studies on Anti-Depressant Bioactive Substances in Selected Species from the Genera Hemerocallis and Gladiolus: A Systematic Review. Pharmaceuticals 2019, 12, 172. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Nakamura, S.; Ohta, T.; Fujimoto, K.; Yoshikawa, M.; Ogawa, K.; Matsuda, H. A Rare Glutamine Derivative from the Flower Buds of Daylily. Org. Lett. 2014, 16, 3076–3078. [Google Scholar] [CrossRef]
- Wood, J.M.; Furkert, D.P.; Brimble, M.A. Total Synthesis and Stereochemical Revision of the 2-Formylpyrrole Alkaloid Hemerocallisamine, I. J. Nat. Prod. 2017, 80, 1926–1929. [Google Scholar] [CrossRef]
- Piotrowska, D.G.; Głowacka, I.E.; Wróblewski, A.E.; Lubowiecka, L. Synthesis of nonracemic hydroxyglutamic acids. Beilstein J. Org. Chem. 2019, 15, 236–255. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.M.; Furkert, D.P.; Brimble, M.A. 2-Formylpyrrole natural products: Origin, structural diversity, bioactivity and synthesis. Nat. Prod. Rep. 2019, 36, 289–306. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.; Kohli, S.; Singh, A.; Asiki, H.; Rathee, G.; Chandra, R.; Anderson, E.A. Recent progress in the total synthesis of pyrrole-containing natural products (2011–2020). Org. Chem. Front. 2021, 8, 5550–5573. [Google Scholar] [CrossRef]
- Ogawa, Y.; Konishi, T. N-Glycosides of Amino Acid Amides from Hemerocallis fulva var. sempervirens. Chem. Pharm. Bull. 2009, 57, 1110–1112. [Google Scholar] [CrossRef]
- Zhang, Y.; Cichewicz, R.H.; Nair, M.G. Lipid peroxidation inhibitory compounds from daylily (Hemerocallis fulva) leaves. Life Sci. 2004, 75, 753–763. [Google Scholar] [CrossRef]
- Inoue, T.; Iwagoe, K.; Konishi, T.; Kiyosawa, S.; Fujiwara, Y. Novel 2,5-dihydrofuryl-γ-lactam derivatives from Hemerocallis fulva L. var. kwanzo regel. Chem. Pharm. Bull. 1990, 38, 3187–3189. [Google Scholar] [CrossRef]
- Ogawa, Y.; Minamizawa, A.; Tada, S.; Konishi, T. Variation of body temperature after administration of amino acid amides. Res. J. Phytochem. 2013, 7, 10–17. [Google Scholar] [CrossRef]
- Ogawa, Y.; Uchiyama, N.; Konishi, T.; Urade, Y. Oxypinnatanine promotes non-rapid eye movement sleep in mice. Sleep Biol. Rhythms 2013, 11, 40–45. [Google Scholar] [CrossRef]
- Zhang, X.; Schmitt, A.C.; Jiang, W. A convenient and high yield method to prepare 4-hydroxypyroglutamic acids. Tetrahedron Lett. 2001, 42, 5335–5338. [Google Scholar] [CrossRef]
- Tamborini, L.; Conti, P.; Pinto, A.; Colleoni, S.; Gobbi, M.; De Micheli, C. Synthesis of new β- and γ-benzyloxy-S-glutamic acid derivatives and evaluation of their activity as inhibitors of excitatory amino acid transporters. Tetrahedron 2009, 65, 6083–6089. [Google Scholar] [CrossRef]
- Lu, J.-Y.; Riedrich, M.; Mikyna, M.; Arndt, H.-D. Aza-Wittig-Supported Synthesis of the A Ring of Nosiheptide. Angew. Chem. Int. Ed. 2009, 48, 8137–8140. [Google Scholar] [CrossRef]
- Benoiton, L.; Winitz, M.; Birnbaum, S.M.; Greenstein, J.P. Studies on Diastereomeric α-Amino Acids and Corresponding α-Hydroxy Acids. IX. Configuration of the Isomeric γ-Hydroxyglutamic Acids. J. Am. Chem. Soc. 1957, 79, 6192–6198. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kaneko, T. Optical Resolution and Stereochemistry of γ-Hydroxyglutamic Acid. Bull. Chem. Soc. Jpn. 1973, 46, 3494–3498. [Google Scholar] [CrossRef]
- Krasnov, V.P.; Alekseeva, L.V.; Firsova, N.A.; Kodess, I.K.; Burde, N.L. Stereospecific synthesis of enantiomers of 4-hydroxyglutamic acid and study of their inhibiting properties with respect to glutamine synthetase. Pharm. Chem. J. 1984, 18, 369–372. [Google Scholar] [CrossRef]
- Hanessian, S.; Vanasse, B. Novel Access to (3R)- and (3S)-3-hydroxy-L-aspartic acids, (4S)-4-hydroxy-L-glutamic acid, and related amino acids. Can J. Chem. 1993, 71, 1401–1406. [Google Scholar] [CrossRef]
- Belhadj, T.; Nowicki, A.; Moody, C.J. Synthesis of the ‘Northern-Hemisphere’ Fragments of the Thiopeptide Antibiotic Nosiheptide. Synlett 2006, 3033–3036. [Google Scholar] [CrossRef]
- Ritter, A.R.; Miller, M.J. Asymmetric Syntheses of Novel Amino Acids and Peptides from Acylnitroso-Derived Cycloadducts. Tetrahedron Lett. 1994, 35, 9379–9382. [Google Scholar] [CrossRef]
- Gefflaut, T.; Bauer, U.; Airola, K.; Koskinen, A.M.P. Asymmetric 1,3-Dipolar Cycloaddition: Synthesis of N-protected (4S)-4-Hydroxy L-Glutamic Acid Diester. Tetrahedron: Asymmetry 1996, 7, 3099–3102. [Google Scholar] [CrossRef]
- Guérard-Hélaine, C.; Heuson, E.; Ndiaye, M.; Gourbeyre, L.; Lemaire, M.; Hélaine, V.; Charmantray, F.; Petit, J.-L.; Salanoubat, M.; de Berardinis, V. Stereoselective synthesis of γ-hydroxy-α-amino acids through aldolase-transaminase recycling cascades. Chem. Commun. 2017, 53, 5465–5468. [Google Scholar] [CrossRef]
- Kolarovič, A.; Jakubec, P. State of the Art in Crystallization-Induced Diastereomer Transformations. Adv. Synth. Catal. 2021, 363, 4110–4158. [Google Scholar] [CrossRef]
- Ďuriš, A.; Wiesenganger, T.; Moravčíková, D.; Baran, P.; Kožíšek, J.; Daïch, A.; Berkeš, D. Expedient and Practical Synthesis of CERT-Dependent Ceramide Trafficking Inhibitor HPA-12 and Its Analogues. Org. Lett. 2011, 13, 1642–1645. [Google Scholar] [CrossRef] [PubMed]
- Berkeš, D.; Kolarovič, A.; Manduch, R.; Baran, P.; Považanec, F. Crystallization-induced asymmetric transformation (CIAT): Stereoconvergent acid-catalyzed lactonization of substituted 2-amino-4-aryl-4-hydroxybutanoic acids. Tetrahedron: Asymmetry 2005, 16, 1927–1934. [Google Scholar] [CrossRef]
- Kasai, M.; Ziffer, H. Ruthenium Tetroxide Catalyzed Oxidations of Aromatic and Heteroaromatic Rings. J. Org. Chem. 1983, 48, 2346–2349. [Google Scholar] [CrossRef]
- Miranda, L.S.M.; Vasconcellos, M.L.A.A. Chemoselective RuO4 Oxidation of Phenyl or p-Methoxyphenyl Groups to Carboxylic Acid Functions in the Presence of a Tetrahydropyran Ring. Synthesis 2004, 1767–1770. [Google Scholar] [CrossRef]
- Geng, H.M.; Chen, J.L.-Y.; Furkert, D.P.; Jiang, S.; Brimble, M.A. A Convergent Synthesis of the 2-Formylpyrrole Spiroketal Natural Product Acortatarin, A. Synlett 2012, 23, 855–858. [Google Scholar] [CrossRef]
- Woods, T.M.; Kamalov, M.; Harris, P.W.R.; Cooper, G.J.S.; Brimble, M. Synthesis of Monolysyl Advanced Glycation Endproducts and Their Incorporation into Collagen Model Peptides. Org. Lett. 2012, 14, 5740–5743. [Google Scholar] [CrossRef]
- Woods, T.M.; Cooper, G.J.S.; Brimble, M. Synthesis of stable isotope-labelled monolysyl advanced glycation endproducts. Amino Acids 2013, 45, 319–325. [Google Scholar] [CrossRef]
- Yuen, T.-Y.; Eaton, S.E.; Woods, T.M.; Furkert, D.P.; Choi, K.W.; Brimble, M.A. A Maillard Approach to 2-Formylpyrroles: Synthesis of Magnolamide, Lobechine and Funebral. Eur. J. Org. Chem. 2014, 1431–1437. [Google Scholar] [CrossRef]
- Wood, J.M.; Furkert, D.P.; Brimble, M.A. Synthesis of the 2-Formylpyrrole Spiroketal Pollenopyrroside A and Structural Elucidation of Xylapyrroside A, Shensongine A and Capparisine, B. Org. Biomol. Chem. 2016, 14, 7659–7664. [Google Scholar] [CrossRef] [PubMed]
- Maeba, I.; Takeuchi, T.; Iijima, T.; Furukawa, H. C-Nucleosides. 7. Preparation and Utility of 6-Hydroxy-6-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-2H-pyran-3(6H)-one as a Key Intermediate of C-Nucleoside Synthesis. J. Org. Chem. 1988, 53, 1401–1405. [Google Scholar] [CrossRef]
- Borthwick, A.D. 2,5-Diketopiperazines: Synthesis, Reactions, Medicinal Chemistry, and Bioactive Natural Products. Chem.Rev. 2012, 112, 3641–3716. [Google Scholar] [CrossRef]
- Okada, T.; Sakaguchi, K.; Shinada, T.; Ohfune, Y. Total synthesis of (–)-funebrine via Au-catalyzed regio- and stereoselective γ-butyrolactonization of allenylsilane. Tetrahedron Lett. 2011, 52, 5744–5746. [Google Scholar] [CrossRef]
- Yamada, M.; Nagashima, N.; Hasegawa, J.; Takahashi, S. A Highly Efficient Asymmetric Synthesis of Methoxyhomophenylalanine Using Michael Addition of Phenylethylamine. Tetrahedron Lett. 1998, 39, 9019–9022. [Google Scholar] [CrossRef]
- Chen, C.-H.; Genapathy, S.; Fischer, P.M.; Chan, W.C. A facile approach to tryptophan derivatives for the total synthesis of argyrin analogues. Org. Biomol. Chem. 2014, 12, 9764–9768. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Upul Ranaweera, R.A.; Merugu, R.; Abdelaziz, N.M.; Robinson, J.; Day, H.A.; Krause, J.A.; Gudmundsdottir, A.D. Comparison of the Photochemistry of Acyclic and Cyclic 4-(4-Methoxy-phenyl)-4-oxo-but-2-enoate Ester Derivatives. J. Phys. Chem. A 2020, 124, 7346–7354. [Google Scholar] [CrossRef]
- Subbiah, S.; Simeonov, S.P.; Esperança, J.M.; Rebelo, L.P.N.; Afonso, C.A. Direct transformation of 5-hydroxymethylfurfural to the building blocks 2, 5-dihydroxymethylfurfural (DHMF) and 5-hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction. Green chemistry 2013, 15, 2849–2853. [Google Scholar] [CrossRef]
- Geng, H.M.; Stubbing, L.A.; Li-yang Chen, J.; Furkert, D.P.; Brimble, M.A. Synthesis of the revised structure of acortatarin A. European Journal of Organic Chemistry 2014, 2014, 6227–6241. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
Entry | Variation from the Optimized Conditions a,b | Yield (%) c |
---|---|---|
1 | none | 47 (43 d) |
2 | 90 °C | 47 |
3 | rt | 36 |
4 | MeCN, 60 °C | 30 |
5 | THF, 60 °C | 22 |
6 | THF/H2O 1:1, 55 °C | 20 |
7 | wet DCE, 55 °C | 43 |
8 | CH2Cl2, 35 °C | 41 |
9 | CH2Cl2, rt | 33 |
10 | +0.1 equiv rac-11, CH2Cl2, rt | 37 |
11 | AcOH (cat.), wet CH2Cl2, rt | 32 |
12 | TEA (1 equiv), CH2Cl2, rt | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinčeková, L.; Jančiová, E.; Berkeš, D.; Gyepes, R.; Kolarovič, A.; Caletková, O. Total Synthesis of Hemerocallisamine I Paved by Gram-Scale Synthesis of (2S,4S)-4-Hydroxyglutamic Acid Lactone. Molecules 2023, 28, 2177. https://doi.org/10.3390/molecules28052177
Pinčeková L, Jančiová E, Berkeš D, Gyepes R, Kolarovič A, Caletková O. Total Synthesis of Hemerocallisamine I Paved by Gram-Scale Synthesis of (2S,4S)-4-Hydroxyglutamic Acid Lactone. Molecules. 2023; 28(5):2177. https://doi.org/10.3390/molecules28052177
Chicago/Turabian StylePinčeková, Lucia, Eva Jančiová, Dušan Berkeš, Róbert Gyepes, Andrej Kolarovič, and Oľga Caletková. 2023. "Total Synthesis of Hemerocallisamine I Paved by Gram-Scale Synthesis of (2S,4S)-4-Hydroxyglutamic Acid Lactone" Molecules 28, no. 5: 2177. https://doi.org/10.3390/molecules28052177
APA StylePinčeková, L., Jančiová, E., Berkeš, D., Gyepes, R., Kolarovič, A., & Caletková, O. (2023). Total Synthesis of Hemerocallisamine I Paved by Gram-Scale Synthesis of (2S,4S)-4-Hydroxyglutamic Acid Lactone. Molecules, 28(5), 2177. https://doi.org/10.3390/molecules28052177