Wastewater-Irrigated Vegetables Are a Significant Source of Heavy Metal Contaminants: Toxicity and Health Risks
Abstract
:1. Introduction
2. Results and Discussion
2.1. Heavy Metals in Wastewater Used for Irrigation and Soil
2.2. Heavy Metals in Vegetables
2.3. Estimation of the Safety of the Soil/Plant System in the Study Crops
3. Materials and Methods
3.1. Description of Study Area
3.2. Sample Collection and Preparation
3.2.1. Vegetables
3.2.2. Soil
3.2.3. Sewage Water
3.3. Analytical Procedures
3.4. Statistical Method
3.5. Calculation of Indices Related to the Safety of the Soil/Plant System in the Study Crops
3.5.1. CLI
3.5.2. BCF
3.5.3. DIM
3.5.4. HRI
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bradley, A.V.; Rosa, I.M.; Pontius, R.G., Jr.; Ahmed, S.E.; Araújo, M.B.; Brown, D.G.; Brandao, A., Jr.; Câmara, G.; Carnerio, T.G.; Hartley, A.J. SimiVal, a multi-criteria map comparison tool for land-change model projections. Environ. Model. Softw. 2016, 82, 229–240. [Google Scholar] [CrossRef]
- Azam, M.; Khan, M.R.; Wabaidur, S.M.; Al-Resayes, S.I.; Islam, M.S. Date pits waste as a solid phase extraction sorbent for the analysis of lead in wastewater and for use in manufacturing brick: An eco-friendly waste management approach. J. Saudi Chem. Soc. 2022, 26, 101519. [Google Scholar] [CrossRef]
- Anyanwu, B.O.; Ezejiofor, A.N.; Igweze, Z.N.; Orisakwe, O.E. Heavy metal mixture exposure and effects in developing nations: An update. Toxics 2018, 6, 65. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Mensah, E.; Kyei-Baffour, N.; Ofori, E.; Obeng, G. Influence of Human Activities and Land Use on Heavy Metal Concentrations in Irrigated Vegetables in Ghana and Their Health Implications. In Appropriate Technologies for Environmental Protection in the Developing World; Springer: Berlin/Heidelberg, Germany, 2009; pp. 9–14. [Google Scholar]
- Ahmad, J.U.; Goni, M. Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environ. Monit. Assess. 2010, 166, 347–357. [Google Scholar] [CrossRef]
- Azam, M.; Wabaidur, S.M.; Khan, M.R.; Al-Resayes, S.I.; Islam, M.S. Heavy Metal Ions Removal from Aqueous Solutions by Treated Ajwa Date Pits: Kinetic, Isotherm, and Thermodynamic Approach. Polymers 2022, 14, 914. [Google Scholar] [CrossRef]
- Khan, M.R.; Ahmad, N.; Ouladsmane, M.; Azam, M. Heavy Metals in Acrylic Color Paints Intended for the School Children Use: A Potential Threat to the Children of Early Age. Molecules 2021, 26, 2375. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, C.; Liu, H.; Khan, M.R.; Zhao, Z.; He, G.; Luo, A.; Zhang, J.; Deng, R.; He, Q. Label-free DNAzyme assays for dually amplified and one-pot detection of lead pollution. J. Hazard. Mater. 2021, 406, 124790. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Naushad, M.; Abulhassan Abdalla, M.; Khan, M.R.; Alothman, Z.A.; Wabaidur, S.M.; Ghfar, A.A. Determination of heavy metals in skin-whitening cosmetics using microwave digestion and inductively coupled plasma atomic emission spectrometry. IET Nanobiotechnol. 2017, 11, 597–603. [Google Scholar] [CrossRef]
- Ji, C.; Liu, J.; Zhang, Q.; Li, J.; Wu, Z.; Wang, X.; Xie, Y.; Zhao, J.; Shi, R.; Ma, X. Multi-Element Analysis and Origin Discrimination of Panax notoginseng Based on Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS). Molecules 2022, 27, 2982. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Wan, R.; Khan, M.R.; Wang, N.; Busquets, R.; Deng, R.; He, Q.; Zhao, Z. Ratiometric G-quadruplex assay for robust lead detection in food samples. Biosensors 2021, 11, 274. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.; Wabaidur, S.M.; Khan, M.R.; Al-Resayes, S.I.; Islam, M.S. Removal of Chromium (III) and Cadmium (II) Heavy Metal Ions from Aqueous Solutions Using Treated Date Seeds: An Eco-Friendly Method. Molecules 2021, 26, 3718. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Cao, Q.; Zheng, Y.; Huang, Y.; Zhu, Y. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Agrawal, M.; Marshall, F. Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull. Environ. Contam. Toxicol. 2006, 77, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Zarasvand, M.A. Heavy metals in selected edible vegetables and estimation of their daily intake in Sanandaj, Iran. Southeast Asian J. Trop. Med. Public Health 2008, 39, 335. [Google Scholar]
- Radwan, M.A.; Salama, A.K. Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem. Toxicol. 2006, 44, 1273–1278. [Google Scholar] [CrossRef]
- Committee. Dietary Guidelines for Americans, 2010; US Department of Health and Human Services, US Department of Agriculture: Washington, DC, USA, 2010. [Google Scholar]
- Siegel, K.R.; Ali, M.K.; Srinivasiah, A.; Nugent, R.A.; Narayan, K.V. Do we produce enough fruits and vegetables to meet global health need? PLoS ONE 2014, 9, e104059. [Google Scholar] [CrossRef]
- Robak, J.; Shridi, F.; Wolbis, M.; Krolikowska, M. Screening of the influence of flavonoids on lipoxygenase and cyclooxygenase activity, as well as on nonenzymic lipid oxidation. Pol. J. Pharmacol. Pharm. 1988, 40, 451–458. [Google Scholar]
- Li, S.; Chen, G.; Zhang, C.; Wu, M.; Wu, S.; Liu, Q. Research progress of natural antioxidants in foods for the treatment of diseases. Food Sci. Hum. Wellness 2014, 3, 110–116. [Google Scholar] [CrossRef]
- Khan, M.R.; Busquets, R.; Azam, M. Blueberry, raspberry, and strawberry extracts reduce the formation of carcinogenic heterocyclic amines in fried camel, beef and chicken meats. Food Control 2021, 123, 107852. [Google Scholar] [CrossRef]
- Khan, M.R.; Deng, R.; Öz, F. Current Developments and Trends in the Liquid Chromatography—Mass Spectrometry Study of Food Integrity and Authenticity. In Chromatographic and Related Separation Techniques in Food Integrity and Authenticity: Volume A: Advances in Chromatographic Techniques; World Scientific: Singapore, 2021; pp. 25–41. [Google Scholar]
- Khan, M.R.; Busquets, R.; Naushad, M.; Puignou, L. Cooking with elaborate recipes can reduce the formation of mutagenic heterocyclic amines and promote co-mutagenic amines. Food Addit. Contam. Part A 2019, 36, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R. Influence of food condiments on the formation of carcinogenic heterocyclic amines in cooked chicken and determination by LC-MS/MS. Food Addit. Contam. Part A 2015, 32, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Shetty, A.; Magadum, S.; Managanvi, K. Vegetables as sources of antioxidants. J. Food Nutr. Disord. 2013, 2, 2. [Google Scholar] [CrossRef]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.H.; Al-Qahtani, K.M. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt. J. Aquat. Res. 2012, 38, 31–37. [Google Scholar] [CrossRef]
- Ametepey, S.T.; Cobbina, S.J.; Akpabey, F.J.; Duwiejuah, A.B.; Abuntori, Z.N. Health risk assessment and heavy metal contamination levels in vegetables from Tamale Metropolis, Ghana. Int. J. Food Contam. 2018, 5, 5. [Google Scholar] [CrossRef]
- Sharma, A.; Katnoria, J.K.; Nagpal, A.K. Heavy metals in vegetables: Screening health risks involved in cultivation along wastewater drain and irrigating with wastewater. SpringerPlus 2016, 5, 488. [Google Scholar] [CrossRef]
- Ugulu, I.; Khan, Z.I.; Rehman, S.; Ahmad, K.; Munir, M.; Bashir, H. Effect of wastewater irrigation on trace metal accumulation in spinach (Spinacia oleracea L.) and human health risk. Pak. J. Anal. Environ. Chem. 2020, 21, 92–101. [Google Scholar] [CrossRef]
- Wieczorek-Dąbrowska, M.; Tomza-Marciniak, A.; Pilarczyk, B.; Balicka-Ramisz, A. Roe and red deer as bioindicators of heavy metals contamination in north-western Poland. Chem. Ecol. 2013, 29, 100–110. [Google Scholar] [CrossRef]
- Chopra, A.; Pathak, C. Accumulation of heavy metals in the vegetables grown in wastewater irrigated areas of Dehradun, India with reference to human health risk. Environ. Monit. Assess. 2015, 187, 445. [Google Scholar] [CrossRef]
- Edo, M.; Björn, E.; Persson, P.-E.; Jansson, S. Assessment of chemical and material contamination in waste wood fuels—A case study ranging over nine years. Waste Manag. 2016, 49, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Brisco, G.; Secretariat, C. Joint FAO/WHO Food Standards Programme; Codex Alimentarius Commission: The Hague, The Netherlands, 2014. [Google Scholar]
- Wong, M.; Chuah, G.; Koh, L.; Ang, K.; Hew, C. The uptake of cadmium by Brassica chinensis and its effect on plant zinc and iron distribution. Environ. Exp. Bot. 1984, 24, 189–195. [Google Scholar] [CrossRef]
- Koeppe, D.E. Lead: Understanding the Minimal Toxicity of Lead in Plants. In Effect of Heavy Metal Pollution on Plants; Springer: Berlin/Heidelberg, Germany, 1981; pp. 55–76. [Google Scholar]
- Leita, L.; De Nobili, M.; Cesco, S.; Mondini, C. Analysis of intercellular cadmium forms in roots and leaves of bush bean. J. Plant Nutr. 1996, 19, 527–533. [Google Scholar] [CrossRef]
- McKenna, I.M.; Chaney, R.L.; Tao, S.-H.; Leach, R.M., Jr.; Williams, F.M. Interactions of plant zinc and plant species on the bioavailability of plant cadmium to Japanese quail fed lettuce and spinach. Environ. Res. 1992, 57, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Lu, Y.; Khan, H.; Ishtiaq, M.; Khan, S.; Waqas, M.; Wei, L.; Wang, T. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem. Toxicol. 2013, 58, 449–458. [Google Scholar] [CrossRef]
- Hu, W.; Huang, B.; Tian, K.; Holm, P.E.; Zhang, Y. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk. Chemosphere 2017, 167, 82–90. [Google Scholar] [CrossRef]
- John, M.K.; Chuah, H.H.; VanLaerhoven, C.J. Cadmium contamination of soil and its uptake by oats. Environ. Sci. Technol. 1972, 6, 555–557. [Google Scholar] [CrossRef]
- Gebrekidan, A.; Weldegebriel, Y.; Hadera, A.; Van der Bruggen, B. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. Ecotoxicol. Environ. Saf. 2013, 95, 171–178. [Google Scholar] [CrossRef]
- Simonsen, L.O.; Brown, A.M.; Harbak, H.; Kristensen, B.I.; Bennekou, P. Cobalt uptake and binding in human red blood cells. Blood Cells Mol. Dis. 2011, 46, 266–276. [Google Scholar] [CrossRef]
- Sinha, P.; Dube, B.; Srivastava, P.; Chatterjee, C. Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere 2006, 65, 651–656. [Google Scholar] [CrossRef]
- Liu, W.-H.; Zhao, J.-Z.; Ouyang, Z.-Y.; Söderlund, L.; Liu, G.-H. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ. Int. 2005, 31, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Muamar, A.; Zouahri, A.; Tijane, M.H.; El Housni, A.; Mennane, Z.; Yachou, H.; Bouksaim, M. Evaluation of heavy metals pollution in groundwater, soil and some vegetables irrigated with wastewater in the Skhirat region “Morocco”. J. Mater. Environ. Sci. 2014, 5, 961–966. [Google Scholar]
- Cui, Y.-J.; Zhu, Y.-G.; Zhai, R.-H.; Chen, D.-Y.; Huang, Y.-Z.; Qiu, Y.; Liang, J.-Z. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 2004, 30, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Toth, T.; Tomáš, J.; Lazor, P.; Bajčan, D.; Jomová, K. The transfer of heavy metals from contaminated soils into agricultural plants in High Tatras region. Czech J. Food Sci 2009, 27, 390–393. [Google Scholar] [CrossRef]
- Bose, S.; Bhattacharyya, A. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 2008, 70, 1264–1272. [Google Scholar] [CrossRef]
- Ashfaq, A.; Khan, Z.I.; Bibi, Z.; Ahmad, K.; Ashraf, M.; Mustafa, I.; Nudrat, A.A.; Perveen, R.; Yasmeen, S. Heavy metals uptake by Cucurbita maxima grown in soil contaminated with sewage water and its human health implications in peri-urban areas of Sargodha city. Pak. J. Zool. 2015, 47, 1051–1058. [Google Scholar]
- Mahmood, A.; Malik, R.N. Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab. J. Chem. 2014, 7, 91–99. [Google Scholar] [CrossRef]
- Giri, S.; Singh, A.K. Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India. Environ. Monit. Assess. 2015, 187, 63. [Google Scholar] [CrossRef]
Metals | Wastewater Used for Irrigation (mg/L) | Maximum Limit of Heavy Metals (mg/L) in Wastewater Water to be Used in Irrigation [33] | Soil (mg/Kg) | Maximum (Safe) Limit of Heavy Metals in Soil (mg/Kg) [29] |
---|---|---|---|---|
Cd | 0.014 | 0.01 | 0.58 | 3 |
Cr | 0.240 | 0.10 | 2.43 | 100 |
Co | 0.780 | 0.10 | 0.83 | - |
Ni | 0.007 | 0.20 | 1.76 | 50 |
Mn | 0.003 | 0.20 | 3.72 | - |
Pb | nd | 5.00 | 0.11 | 2000 |
Vegetables | Edible Parts | Cd (Mean mg/kg ± sd) | FAO/WHO Maximum Permissible Limit (Cd, mg/kg) | Cr (Mean mg/kg ± sd) | FAO/WHO Maximum Permissible Limit (Cr, mg/kg) | Co (Mean mg/kg ± sd) | FAO/WHO Maximum Permissible Limit (Co, mg/kg) | Ni (Mean mg/kg ± sd) | FAO/WHO Maximum Permissible Limit (Ni, mg/kg) | Mn (Mean mg/kg ± sd) | FAO/WHO Maximum Permissible Limit (Mn, mg/kg) | Pb (Mean mg/kg ± sd) | FAO/WHO Maximum Permissible Limit (Pb, mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Apple gourd | Leaves | 1.20 ± 0.02 | 0.10 | 0.72 ± 0.06 | - | 0.83 ± 0.03 | - | 1.11 ± 0.01 | - | 4.63 ± 0.02 | - | 0.93 ± 0.03 | 0.3 |
Stem | 0.67 ± 0.001 | - | 1.20 ± 0.01 | - | 1.77 ± 0.01 | - | 1.72 ± 0.03 | - | 2.65 ± 0.01 | - | 0.14 ± 0.01 | - | |
Fruit | 1.20 ± 0.04 | 0.05 | 1.20 ± 0.03 | 2.3 | 0.85 ± 0.04 | 50 | 2.61 ± 0.06 | 67.9 | 8.65 ± 0.05 | 500 | 0.21 ± 0.02 | 0.1 | |
Spinach | Leaves | 1.20 ± 0.03 | 0.10 | 1.21 ± 0.02 | 2.3 | 0.85 ± 0.01 | 50 | 2.61 ± 0.11 | 67.9 | 8.65 ± 0.06 | 500 | 0.21 ± 0.02 | 0.3 |
Stem | 1.00 ± 0.001 | - | 1.50 ± 0.01 | - | 0.74 ± 0.03 | - | 2.29 ± 0.01 | - | 6.10 ± 0.01 | - | 0.31 ± 0.01 | - | |
Fruit | 0.70 ± 0.02 | 0.05 | 3.45 ± 0.03 | - | 0.80 ± 0.02 | - | 1.23 ± 0.06 | - | 1.81 ± 0.05 | - | 0.36 ± 0.09 | 0.1 | |
Cauliflower | Leaves | 0.94 ± 0.06 | 0.10 | 2.49 ± 0.01 | - | 1.55 ± 0.04 | - | 1.26 ± 0.06 | - | 4.16 ± 0.27 | - | 0.59 ± 0.01 | 0.3 |
Stem | 0.53 ± 0.01 | - | 2.26 ± 0.20 | - | 1.03 ± 0.10 | - | 0.88 ± 0.02 | - | 1.22 ± 0.01 | - | 0.14 ± 0.01 | - | |
Fruit | 0.97 ± 0.04 | 0.05 | 2.91 ± 0.01 | 2.3 | 2.08 ± 0.10 | 50 | 1.13 ± 0.03 | 67.9 | 1.15 ± 0.18 | 500 | 0.53 ± 0.09 | 0.1 | |
Sponge gourd | Leaves | 1.01 ± 0.09 | 0.10 | 2.52 ± 0.01 | - | 1.71 ± 0.20 | - | 2.37 ± 0.04 | - | 3.18 ± 0.52 | - | 0.70 ± 0.02 | 0.3 |
Stem | 0.73 ± 0.05 | - | 2.52 ± 0.04 | - | 1.16 ± 0.01 | - | 2.57 ± 0.03 | - | 0.56 ± 0.01 | - | 0.26 ± 0.01 | - | |
Fruit | 0.53 ± 0.04 | 0.05 | 4.00 ± 0.03 | 2.3 | 0.92 ± 0.04 | 50 | 1.16 ± 0.05 | 67.9 | 2.97 ± 0.18 | 500 | 0.16 ± 0.001 | 0.1 | |
Coriander | Leaves | 0.53 ± 0.04 | 0.10 | 4.00 ± 0.06 | 2.3 | 0.92 ± 0.03 | 50 | 1.16 ± 0.03 | 67.9 | 2.97 ± 0.06 | 500 | 0.16 ± 0.03 | 0.3 |
Stem | 0.38 ± 0.01 | - | 3.80 ± 0.05 | - | 1.60 ± 0.01 | - | 1.30 ± 0.04 | - | 1.70 ± 0.18 | - | 0.11 ± 0.03 | - | |
Fruit | 1.04 ± 0.03 | 0.05 | 0.64 ± 0.01 | - | 0.76 ± 0.01 | - | 0.80 ± 0.03 | - | 3.19 ± 0.42 | - | 0.66 ± 0.03 | 0.1 |
Vegetables | Heavy Metals | |||||
---|---|---|---|---|---|---|
Mn | Cd | Pb | Co | Ni | Cr | |
Apple gourd | 0.44 | 11.96 | 1.05 | 0.22 | 0.26 | 1.25 |
Spinach | 1.21 | 13.85 | 0.33 | 0.24 | 0.75 | 2.30 |
Cauliflower | 0.25 | 8.05 | 0.58 | 0.23 | 0.35 | 6.61 |
Sponge gourd | 0.16 | 11.25 | 0.85 | 0.60 | 0.32 | 5.57 |
Coriander | 0.42 | 6.10 | 0.26 | 0.26 | 0.33 | 7.67 |
Parameters | Cd | Cr | Co | Ni | Mn | Pb |
---|---|---|---|---|---|---|
Wavelength (nm) | 228.8 | 422.7 | 395.4 | 232.0 | 279.5 | 283.3 |
Slit width (nm) | 0.6 | 0.6 | 0.6 | 0.7 | 0.2 | 0.6 |
Lamp current (mA) | 8.0 | 8.0 | 10 | 8.0 | 10 | 10 |
Air flow rate (L/min) | 15 | 15 | 15 | 15 | 15 | 15 |
Acetylene flow rate (L/min) | 2.0 | 2.6 | 1.8 | 2.0 | 1.8 | 2.2 |
Burner height (mm) | 9.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aftab, K.; Iqbal, S.; Khan, M.R.; Busquets, R.; Noreen, R.; Ahmad, N.; Kazimi, S.G.T.; Karami, A.M.; Al Suliman, N.M.S.; Ouladsmane, M. Wastewater-Irrigated Vegetables Are a Significant Source of Heavy Metal Contaminants: Toxicity and Health Risks. Molecules 2023, 28, 1371. https://doi.org/10.3390/molecules28031371
Aftab K, Iqbal S, Khan MR, Busquets R, Noreen R, Ahmad N, Kazimi SGT, Karami AM, Al Suliman NMS, Ouladsmane M. Wastewater-Irrigated Vegetables Are a Significant Source of Heavy Metal Contaminants: Toxicity and Health Risks. Molecules. 2023; 28(3):1371. https://doi.org/10.3390/molecules28031371
Chicago/Turabian StyleAftab, Kiran, Sarosh Iqbal, Mohammad Rizwan Khan, Rosa Busquets, Razia Noreen, Naushad Ahmad, Syed Gohar Taqi Kazimi, Abdulnasser Mahmoud Karami, Nouf Mohammad Saad Al Suliman, and Mohamed Ouladsmane. 2023. "Wastewater-Irrigated Vegetables Are a Significant Source of Heavy Metal Contaminants: Toxicity and Health Risks" Molecules 28, no. 3: 1371. https://doi.org/10.3390/molecules28031371
APA StyleAftab, K., Iqbal, S., Khan, M. R., Busquets, R., Noreen, R., Ahmad, N., Kazimi, S. G. T., Karami, A. M., Al Suliman, N. M. S., & Ouladsmane, M. (2023). Wastewater-Irrigated Vegetables Are a Significant Source of Heavy Metal Contaminants: Toxicity and Health Risks. Molecules, 28(3), 1371. https://doi.org/10.3390/molecules28031371