Evaluation of Hold-Up Volume Determination Methods and Markers in Hydrophilic Interaction Liquid Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pycnometry
2.2. Homologous Series LFER Method
2.3. Hold-Up Volume Markers
2.4. Minor Disturbance (Solvent Peak) Method
2.5. Comparison of the Different Methods for the Hold-Up Volume Estimation
2.6. Effects of the Salt Concentration on the Eluent
3. Materials and Methods
3.1. Instrumentation
3.2. Methods and Chromatographic Conditions
3.3. Chemicals and Solvents
3.4. Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rimmer, C.A.; Simmons, C.R.; Dorsey, J.G. The Measurement and Meaning of Void Volumes in Reversed-Phase Liquid Chromatography. J. Chromatogr. A 2002, 965, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Noga, S. Hydrophilic Interaction Liquid Chromatography (HILIC)—A Powerful Separation Technique. Anal. Bioanal. Chem. 2012, 402, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Jandera, P.; Janás, P. Recent Advances in Stationary Phases and Understanding of Retention in Hydrophilic Interaction Chromatography. A Review. Anal. Chim. Acta 2017, 967, 12–32. [Google Scholar] [CrossRef] [PubMed]
- McCalley, D.V. Understanding and Manipulating the Separation in Hydrophilic Interaction Liquid Chromatography-a Review. J. Chromatogr. A 2017, 1523, 49–71. [Google Scholar] [CrossRef] [PubMed]
- McCalley, D.V.; Neue, U.D. Estimation of the Extent of the Water-Rich Layer Associated with the Silica Surface in Hydrophilic Interaction Chromatography. J. Chromatogr. A 2008, 1192, 225–229. [Google Scholar] [CrossRef]
- Bell, D.S.; Majors, R.E. Retention and Selectivity of Stationary Phases Used in HILIC. LC-GC Eur. 2015, 18, 26–32. [Google Scholar]
- McCalley, D.V. A Study of the Analysis of Acidic Solutes by Hydrophilic Interaction Chromatography. J. Chromatogr. A 2018, 1534, 64–74. [Google Scholar] [CrossRef]
- Melnikov, S.M.; Höltzel, A.; Seidel-Morgenstern, A.; Tallarek, U. Composition, Structure, and Mobility of Water-Acetonitrile Mixtures in a Silica Nanopore Studied by Molecular Dynamics Simulations. Anal. Chem. 2011, 83, 2569–2575. [Google Scholar] [CrossRef]
- Melnikov, S.M.; Höltzel, A.; Seidel-Morgenstern, A.; Tallarek, U. A Molecular Dynamics Study on the Partitioning Mechanism in Hydrophilic Interaction Chromatography. Angew. Chem. Int. Ed. 2012, 51, 6251–6254. [Google Scholar] [CrossRef]
- Wikberg, E.; Sparrman, T.; Viklund, C.; Jonsson, T.; Irgum, K. A 2H Nuclear Magnetic Resonance Study of the State of Water in Neat Silica and Zwitterionic Stationary Phases and Its Influence on the Chromatographic Retention Characteristics in Hydrophilic Interaction High-Performance Liquid Chromatography. J. Chromatogr. A 2011, 1218, 6630–6638. [Google Scholar] [CrossRef]
- Dinh, N.P.; Jonsson, T.; Irgum, K. Water Uptake on Polar Stationary Phases under Conditions for Hydrophilic Interaction Chromatography and Its Relation to Solute Retention. J. Chromatogr. A 2013, 1320, 33–47. [Google Scholar] [CrossRef]
- Soukup, J.; Jandera, P. Adsorption of Water from Aqueous Acetonitrile on Silica-Based Stationary Phases in Aqueous Normal-Phase Liquid Chromatography. J. Chromatogr. A 2014, 1374, 102–111. [Google Scholar] [CrossRef]
- The IUPAC Compendium of Chemical Terminology. Available online: https://goldbook.iupac.org/ (accessed on 27 January 2021).
- Buszewski, B.; Kulpa, M. Influence of Coverage Density of Chemically Bonded C18 Phases on the Retention Data of Substances Eluted in Dead Volume During RP HPLC Analysis. J. Liq. Chromatogr. 1993, 16, 75–94. [Google Scholar] [CrossRef]
- Yun, K.S.; Zhu, C.; Parchar, J.F. Theoretical Relationships between the Void Volume, Mobile Phase Volume, Retention Volume, Adsorption, and Gibbs Free Energy in Chromatographic Processes. Anal. Chem. 1995, 67, 613–619. [Google Scholar] [CrossRef]
- Shibukawa, M.; Takazawa, Y.; Saitoh, K. Measurement of Mobile-Phase Volume in Reversed-Phase Liquid Chromatography and Evaluation of the Composition of Liquid Layer Formed by Solvation of Packing Materials. Anal. Chem. 2007, 79, 6279–6286. [Google Scholar] [CrossRef]
- Buszewski, B.; Bocian, S.; Felinger, A. Artifacts in Liquid-Phase Separations–System, Solvent, and Impurity Peaks. Chem. Rev. 2012, 112, 2629–2641. [Google Scholar] [CrossRef]
- McCalley, D.V. Evaluation of a Linear Free Energy Relationship for the Determination of the Column Void Volume in Hydrophilic Interaction Chromatography. J. Chromatogr. A 2021, 1638, 461849. [Google Scholar] [CrossRef]
- Berendsen, G.E.; Schoenmakers, P.J.; de Galan, L.; Vigh, G.; Varga-puchony, Z.; Inczédy, J. On the Determination of the Hold-up Time in Reversed Phase Liquid Chromatography. J. Liq. Chromatogr. 1980, 3, 1669–1686. [Google Scholar] [CrossRef]
- van der Houwen, O.A.G.J.; van der Linden, J.A.A.; Indemans, A.W.M. Evaluation of the Use of Lithium Nitrate as a Test Substance for the Determination of the Hold-Up Time of a Reversed-Phase Packing. J. Liq. Chromatogr. 1982, 5, 2321–2341. [Google Scholar] [CrossRef]
- Melander, W.R.; Erard, J.F.; Horváth, C. Movement of Components in Reversed-Phase Chromatography. J. Chromatogr. A 1983, 282, 211–228. [Google Scholar] [CrossRef]
- Nakamura, M.; Tamura, K.; Murakami, S. Isotope Effects on Thermodynamic Properties: Mixtures of x(D2O or H2O) + (1 − x)CH3CN at 298.15 K. Thermochim. Acta 1995, 253, 127–136. [Google Scholar] [CrossRef]
- Herráez, J.V.; Belda, R. Refractive Indices, Densities and Excess Molar Volumes of Monoalcohols + Water. J. Solution Chem. 2006, 35, 1315–1328. [Google Scholar] [CrossRef]
- Subirats, X.; Justicia, A.; Rosés, M. Chasing the Elusive Hold-up Time from an LFER Approach. J. Chromatogr. A 2018, 1571, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H. Scales of Solute Hydrogen-Bonding: Their Construction and Application to Physicochemical and Biochemical Processes. Chem. Soc. Rev. 1993, 22, 73. [Google Scholar] [CrossRef]
- Abraham, M.H.; Rosés, M. Hydrogen Bonding. 38. Effect of Solute Structure and Mobile Phase Composition on Reversed-Phase High-Performance Liquid Chromatographic Capacity Factors. J. Phys. Org. Chem. 1994, 7, 672–684. [Google Scholar] [CrossRef]
- Tan, L.C.; Carr, P.W.; Abraham, M.H. Study of Retention in Reversed-Phase Liquid Chromatography Using Linear Solvation Energy Relationships: I. The Stationary Phase. J. Chromatogr. A 1996, 752, 1–18. [Google Scholar] [CrossRef]
- Abraham, M.H.; Rosés, M.; Poole, C.F.; Poole, S.K. Hydrogen Bonding. 42.Characterization of Reversed-Phase High-Performance Liquid Chromatographic C18 Stationary Phases. J. Phys. Org. Chem. 1997, 10, 358–368. [Google Scholar] [CrossRef]
- Tan, L.C.; Carr, P.W. Study of Retention in Reversed-Phase Liquid Chromatography Using Linear Solvation Energy Relationships: II. The mobile phase. J. Chromatogr. A 1998, 799, 1–19. [Google Scholar] [CrossRef]
- Wang, A.; Tan, L.C.; Carr, P.W. Global Linear Solvation Energy Relationships for Retention Prediction in Reversed-Phase Liquid Chromatography. J. Chromatogr. A 1999, 848, 21–37. [Google Scholar] [CrossRef]
- Vitha, M.; Carr, P.W. The Chemical Interpretation and Practice of Linear Solvation Energy Relationships in Chromatography. J. Chromatogr. A 2006, 1126, 143–194. [Google Scholar] [CrossRef]
- Poole, C.F.; Lenca, N. Applications of the Solvation Parameter Model in Reversed-Phase Liquid Chromatography. J. Chromatogr. A 2017, 1486, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Žuvela, P.; Skoczylas, M.; Jay Liu, J.; Baczek, T.; Kaliszan, R.; Wong, M.W.; Buszewski, B. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem. Rev. 2019, 119, 3674–3729. [Google Scholar] [CrossRef]
- Subirats, X.; Abraham, M.H.; Rosés, M. Characterization of Hydrophilic Interaction Liquid Chromatography Retention by a Linear Free Energy Relationship. Comparison to Reversed- and Normal-Phase Retentions. Anal. Chim. Acta 2019, 1092, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Redón, L.; Subirats, X.; Rosés, M. HILIC Characterization: Estimation of Phase Volumes and Composition for a Zwitterionic Column. Anal. Chim. Acta 2020, 1130, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Poole, C.F. Solvation Parameter Model: Tutorial on Its Application to Separation Systems for Neutral Compounds. J. Chromatogr. A 2021, 1645, 462108. [Google Scholar] [CrossRef]
- Soriano-Meseguer, S.; Fuguet, E.; Abraham, M.H.; Port, A.; Rosés, M. Linear Free Energy Relationship Models for the Retention of Partially Ionized Acid-Base Compounds in Reversed-Phase Liquid Chromatography. J. Chromatogr. A 2021, 1635, 461720. [Google Scholar] [CrossRef]
- Cortés, S.; Subirats, X.; Rosés, M. Solute–Solvent Interactions in Hydrophilic Interaction Liquid Chromatography: Characterization of the Retention in a Silica Column by the Abraham Linear Free Energy Relationship Model. J. Solution Chem. 2022, 51, 1081–1100. [Google Scholar] [CrossRef]
- Ulrich, N.; Endo, S.; Brown, T.N.; Watanabe, N.; Bronner, G.; Abraham, M.H.; Goss, K.-U. UFZ-LSER Database v 3.2 [Internet]. Available online: http://www.ufz.de/lserd (accessed on 23 December 2022).
- Guo, Y.; Shah, R. Detailed Insights into the Retention Mechanism of Caffeine Metabolites on the Amide Stationary Phase in Hydrophilic Interaction Chromatography. J. Chromatogr. A 2016, 1463, 121–127. [Google Scholar] [CrossRef]
- McCalley, D.V. Effect of Mobile Phase Additives on Solute Retention at Low Aqueous PH in Hydrophilic Interaction Liquid Chromatography. J. Chromatogr. A 2017, 1483, 71–79. [Google Scholar] [CrossRef]
- Guo, Y.; Bhalodia, N.; Fattal, B. Evaluating Relative Retention of Polar Stationary Phases in Hydrophilic Interaction Chromatography. Separations 2019, 6, 42. [Google Scholar] [CrossRef]
- Craven, C.B.; Joyce, C.W.; Lucy, C.A. Effect of Nature of Electrolytes on Retention and Selectivity in Hydrophilic Interaction Liquid Chromatography. J. Chromatogr. A 2019, 1584, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Rumble, J.R. CRC Handbook of Chemistry and Physics, 103rd ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- ACD/Labs, Software V11.02; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2022.
- Chem 3D, Version 21.0.0.28; Perkin Elmer: Waltham, MA, USA, 2022.
- Jiang, P.; Wu, D.; Lucy, C.A. Determination of Void Volume in Normal Phase Liquid Chromatography. J. Chromatogr. A 2014, 1324, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Adams, E.; Desmet, G.; Cabooter, D. Evaluation and Comparison of the Kinetic Performance of Ultra-High Performance Liquid Chromatography and High-Performance Liquid Chromatography Columns in Hydrophilic Interaction and Reversed-Phase Liquid Chromatography Conditions. J. Chromatogr. A 2014, 1369, 83–91. [Google Scholar] [CrossRef]
- Song, H.; Desmet, G.; Cabooter, D. Evaluation of the Kinetic Performance Differences between Hydrophilic-Interaction Liquid Chromatography and Reversed-Phase Liquid Chromatography under Conditions of Identical Packing Structure. Anal. Chem. 2015, 87, 12331–12339. [Google Scholar] [CrossRef]
- West, C.; Auroux, E. Deconvoluting the Effects of Buffer Salt Concentration in Hydrophilic Interaction Chromatography on a Zwitterionic Stationary Phase. J. Chromatogr. A 2016, 1461, 92–97. [Google Scholar] [CrossRef]
- Redón, L.; Subirats, X.; Rosés, M. Volume and Composition of Semi-Adsorbed Stationary Phases in Hydrophilic Interaction Liquid Chromatography. Comparison of Water Adsorption in Common Stationary Phases and Eluents. J. Chromatogr. A 2021, 1656, 462543. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Heaton, J.C.; McCalley, D.V. Practical Investigation of the Factors That Affect the Selectivity in Hydrophilic Interaction Chromatography. J. Chromatogr. A 2013, 1276, 33–46. [Google Scholar] [CrossRef]
- Alpert, A.J. Effect of Salts on Retention in Hydrophilic Interaction Chromatography. J. Chromatogr. A 2018, 1538, 45–53. [Google Scholar] [CrossRef]
- Nesterenko, E.P.; Nesterenko, P.N.; Paull, B. Zwitterionic Ion-Exchangers in Ion Chromatography: A Review of Recent Developments. Anal. Chim. Acta 2009, 652, 3–21. [Google Scholar] [CrossRef]
- Beltrán, J.L.; Pignatello, J.J.; Teixidó, M. ISOT_Calc: A Versatile Tool for Parameter Estimation in Sorption Isotherms. Comput. Geosci. 2016, 94, 11–17. [Google Scholar] [CrossRef] [Green Version]
E | S | A | B | V | |
---|---|---|---|---|---|
Homologous series | |||||
n-Alkyl benzenes | 0.59 ± 0.01 | 0.50 ± 0.02 | 0.00 ± 0.00 | 0.15 ± 0.00 | 0.72–2.41 |
n-Alkyl phenones | 0.78 ± 0.02 | 0.96 ± 0.02 | 0.00 ± 0.00 | 0.50 ± 0.01 | 1.01–2.14 |
n-Alkyl ketones | 0.12 ± 0.03 | 0.68 ± 0.01 | 0.00 ± 0.01 | 0.51 ± 0.01 | 0.55–2.80 |
ϕorg (v/v) | VM (mL) | v | N | R2adj | RMSE |
---|---|---|---|---|---|
Acetonitrile | |||||
100% | 1.835 ± 0.004 | −0.56 ± 0.05 | 31 | 0.982 | 0.004 |
90% | 1.713 ± 0.003 | −0.67 ± 0.04 | 31 | 0.985 | 0.004 |
80% | 1.617 ± 0.002 | −0.83 ± 0.03 | 31 | 0.993 | 0.004 |
70% | 1.547 ± 0.002 | −0.82 ± 0.03 | 29 | 0.996 | 0.003 |
Methanol | |||||
100% | 1.820 ± 0.004 | −0.59 ± 0.04 | 31 | 0.985 | 0.004 |
90% | 1.830 ± 0.003 | −0.62 ± 0.04 | 31 | 0.987 | 0.004 |
80% | 1.834 ± 0.003 | −0.75 ± 0.04 | 29 | 0.993 | 0.003 |
Marker Candidate | Acetonitrile | Methanol | |||||
---|---|---|---|---|---|---|---|
100% | 90% | 80% | 70% | 100% | 90% | 80% | |
n-Alkyl benzenes | |||||||
Hexylbenzene | 0.017 | 0.010 | 0.007 | 0.009 | 0.020 | 0.018 | 0.015 |
Octylbenzene | 0.011 | 0.005 | 0.003 | 0.004 | 0.014 | 0.013 | 0.011 |
Dodecylbenzene | 0.002 | −0.003 | −0.001 | 0.013 | 0.004 | 0.005 | 0.021 |
n-Alkyl phenones | |||||||
Octanophenone | 0.021 | 0.013 | 0.010 | 0.014 | 0.024 | 0.018 | 0.012 |
Nonanophenone | 0.017 | 0.009 | 0.006 | 0.009 | 0.020 | 0.015 | 0.009 |
Decanophenone | 0.014 | 0.007 | 0.003 | 0.005 | 0.017 | 0.012 | 0.007 |
n-Alkyl ketones | |||||||
Tridecan-2-one | 0.016 | 0.013 | 0.011 | 0.014 | 0.012 | 0.010 | 0.005 |
Pentadecan-2-one | 0.010 | 0.008 | 0.006 | 0.009 | 0.007 | 0.006 | 0.002 |
Nonadecan-2-one | 0.000 | 0.001 | 0.004 | 0.018 | −0.003 | −0.003 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redón, L.; Subirats, X.; Rosés, M. Evaluation of Hold-Up Volume Determination Methods and Markers in Hydrophilic Interaction Liquid Chromatography. Molecules 2023, 28, 1372. https://doi.org/10.3390/molecules28031372
Redón L, Subirats X, Rosés M. Evaluation of Hold-Up Volume Determination Methods and Markers in Hydrophilic Interaction Liquid Chromatography. Molecules. 2023; 28(3):1372. https://doi.org/10.3390/molecules28031372
Chicago/Turabian StyleRedón, Lídia, Xavier Subirats, and Martí Rosés. 2023. "Evaluation of Hold-Up Volume Determination Methods and Markers in Hydrophilic Interaction Liquid Chromatography" Molecules 28, no. 3: 1372. https://doi.org/10.3390/molecules28031372
APA StyleRedón, L., Subirats, X., & Rosés, M. (2023). Evaluation of Hold-Up Volume Determination Methods and Markers in Hydrophilic Interaction Liquid Chromatography. Molecules, 28(3), 1372. https://doi.org/10.3390/molecules28031372