Synthesis, Characterization, and Study of Catalytic Activity of Chiral Cu(II) and Ni(II) Salen Complexes in the α-Amino Acid C-α Alkylation Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Salen Complexes
2.2. Spectroscopic Studies (IR)
2.3. TG/MS Studies
2.4. X-ray Analysis
2.5. DFT Analysis of Complex 3
Conformational Analysis
2.6. Evaluation of the Cu(II) and Ni(II) Salen Complexes as Catalysts in the PTC Reaction
3. Materials and Methods
3.1. (1S,2S)-diaminocyclohexane
3.2. Synthesis of the Catalysts
3.2.1. Cu(II) Complex of (1S,2S)-[N,N’-bis(2’-hydroxy-benzylidene)]-1,2-diaminocyclohexane (1)
3.2.2. Cu(II) Complex of (1S,2S)-[N,N’-bis(2’-hydroxy-3’-methoxy-benzylidene)]-1,2-diaminocyclohexane (2)
3.2.3. Cu(II) Complex of (1S,2S)-[N,N’-bis(2’-hydroxy-3’-allyl-benzylidene)]-1,2-diaminocyclohexane (3)
3.2.4. Cu(II) Complex of (1S,2S)-N,N’-bis [2’-hydroxy-3’,5’-di-tert-butyl-benzylidene]-1,2-cyclohexanediamine (4)
3.2.5. Cu(II) Complex of (1S,2S)-[N,N-bis(2’-hydroxy-3’-bromo-benzylidene)]-1,2-diaminocyclohexane (5)
3.2.6. Cu(II) Complex of (1S,2S)-[N,N-bis(2’-hydroxy-4’-bromo-benzylidene)]-1,2-diaminocyclohexane (6)
3.2.7. Cu(II) Complex of (1S,2S)-[N,N-bis(2’-hydroxy-3’-tert-butyl-5’-bromo-benzylidene)]-1,2-diaminocyclohexane (7)
3.2.8. Ni(II) Complex of (1S,2S)-[N,N-bis(2’-hydroxy-benzylidene)]-1,2-diaminocyclohexane (8)
3.2.9. Ni(II) Complex of (1S,2S)-[N,N-bis(2’-hydroxy-3’-methoxy-benzylidene)]-1,2-diaminocyclohexane (9)
3.2.10. Ni(II) Complex of (1S,2S)-[N,N-bis(2’-hydroxy-3’-allyl-benzylidene)]-1,2-diaminocyclohexane (10)
3.2.11. Ni(II) Complex of (1S,2S)-N,N’-bis[2’-hydroxy-3’,5’-di-tert-butyl-benzylidene]-1,2-cyclohexanediamine (11)
3.2.12. Ni(II) Complex of (1S,2S)-[N,N-bis(2’-hydroxy-3’-bromo-benzylidene)]-1,2-diaminocyclohexane (12)
3.2.13. Ni(II) Complex of (1S,2S)-[N,N-bis(2’-hydroxy-5’-bromo-benzylidene)]-1,2-diaminocyclohexane (13)
3.2.14. Ni(II) Complex of (1S,2S)-[N,N-bis(2’-hydroxy-3’-tert-butyl-5’-bromo-benzylidene)]-1,2-diaminocyclohexane (14)
3.2.15. (1S,2S)-[N,N-bis(2’-hydroxy-3’,5’-tert-butyl-benzylidene)]-1,2-diaminocyclohexane
3.2.16. (1S,2S)-[N,N-bis(2’-hydroxy-5’-bromo-benzylidene)]-1,2-diaminocyclohexane
3.3. Catalytic Asymmetric Alkylation Procedure
3.4. Schiff Bases of (R,S)-alanine
3.4.1. Isopropyl N-benzylidene-(R,S)-alaninate (17)
3.4.2. Isopropyl N-4-chlorobenzylidene-(R,S)-alaninate (18)
3.4.3. Isopropyl N-2-chlorobenzylidene-(R,S)-alaninate (19)
3.5. Theoretical Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Barker, R.E.; Guo, L.; Mota, C.J.; North, M.; Ozorio, L.P.; Pointer, W.; Walberton, S.; Wu, X. General Approach to Silica-Supported Salens and Salophens and Their Use as Catalysts for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. J. Org. Chem. 2022, 87, 16410–16423. [Google Scholar] [CrossRef]
- Jos, S.; Suja, N.R. Chiral Schiff base ligands of salicylaldehyde: A versatile tool for medical applications and organic synthesis—A review. Inorg. Chim. Acta 2023, 547, 121323. [Google Scholar] [CrossRef]
- Erxleben, A. Transition metal salen complexes in bioinorganic and medicinal chemistry. Inorg. Chim. Acta 2018, 472, 40–57. [Google Scholar] [CrossRef]
- Yuan, Y.-C.; Mellah, M.; Schulz, E.; David, O.R.P. Making Chiral Salen Complexes Work with Organocatalysts. Chem. Rev. 2022, 122, 8841–8883. [Google Scholar] [CrossRef]
- Sharma, A.; Mejia, K.; Ueno, H.; Zhou, W.; Chiang, L. Copper complexes of strongly electron rich and deficient salen ligands. Inorg. Chim. Acta 2022, 542, 121106. [Google Scholar] [CrossRef]
- Yang, H.-Q.; Chen, Z.-X. Theoretical Studies on Bimetallic Salen Complexes Catalyzed Epoxide Hydration: Effects of Metal Centers, Substrates, and Ligands. J. Phys. Chem. A 2021, 125, 10155–10164. [Google Scholar] [CrossRef]
- Kanso, H.; Clarke, R.M.; Kochem, A.; Arora, H.; Philouze, C.; Jarjayes, O.; Storr, T.; Thomas, F. Effect of Distortions on the Geometric and Electronic Structures of One-Electron Oxidized Vanadium(IV), Copper(II), and Cobalt(II)/(III) Salen Complexes. Inorg. Chem. 2020, 59, 5133–5148. [Google Scholar] [CrossRef]
- Kurahashi, T.; Fujii, H. One-Electron Oxidation of Electronically Diverse Manganese(III) and Nickel(II) Salen Complexes: Transition from Localized to Delocalized Mixed-Valence Ligand Radicals. J. Am. Chem. Soc. 2011, 133, 8307–8316. [Google Scholar] [CrossRef]
- Al-Farhan, B.S.; Basha, M.T.; Abdel Rahman, L.H.; El-Saghier, A.M.M.; El-Ezz, D.A.; Marzouk, A.A.; Shehata, M.R.; Abdalla, E.M. Synthesis, DFT Calculations, Antiproliferative, Bactericidal Activity and Molecular Docking of Novel Mixed-Ligand Salen/8-Hydroxyquinoline Metal Complexes. Molecules 2021, 26, 4725. [Google Scholar] [CrossRef]
- Tomczyk, D.; Seliger, P.; Bukowski, W.; Bester, K. The Influence of Electrolyte Type on Kinetics of Redox Processes in the Polymer Films of Ni(II) Salen-Type Complexes. Molecules 2022, 27, 1812. [Google Scholar] [CrossRef]
- Storr, T.; Mukherjee, R. Preface for the Forum on Applications of Metal Complexes with Ligand-Centered Radicals. Inorg. Chem. 2018, 57, 9577–9579. [Google Scholar] [CrossRef] [Green Version]
- Sutradhar, M.; Pombeiro, A.J.; da Silva, J.A.L. Water oxidation with transition metal catalysts with non-innocent ligands and its mechanisms. Coord. Chem. Rev. 2021, 439, 213911. [Google Scholar] [CrossRef]
- Solís-Muñana, P.; Salam, J.; Ren, C.Z.; Carr, B.; Whitten, A.E.; Warr, G.G.; Chen, J.L.Y. An Amphiphilic (salen)Co Complex–Utilizing Hydrophobic Interactions to Enhance the Efficiency of a Cooperative Catalyst. Adv. Synth. Catal. 2021, 363, 3207–3213. [Google Scholar] [CrossRef]
- Yusuf, T.L.; Oladipo, S.D.; Zamisa, S.; Kumalo, H.M.; Lawal, I.A.; Lawal, M.M.; Mabuba, N. Design of New Schiff-Base Copper(II) Complexes: Synthesis, Crystal Structures, DFT Study, and Binding Potency toward Cytochrome P450 3A4. ACS Omega 2021, 6, 13704–13718. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E. Chiral Cobalt-Salen Complexes: Ubiquitous Species in Asymmetric Catalysis. Chem. Rec. 2021, 21, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Layek, M.; Saha, R.; Rizzoli, C.; Bandyopadhyay, D. Synthesis, crystal structure and antibacterial activity of four mononuclear Schiff base complexes of copper(II) and nickel(II). Transit. Met. Chem. 2021, 46, 9–16. [Google Scholar] [CrossRef]
- Mbugua, S.N.; Sibuyi, N.R.; Njenga, L.W.; Odhiambo, R.A.; Wandiga, S.O.; Meyer, M.; Lalancette, R.A.; Onani, M.O. New Palladium(II) and Platinum(II) Complexes Based on Pyrrole Schiff Bases: Synthesis, Characterization, X-ray Structure, and Anticancer Activity. ACS Omega 2020, 5, 14942–14954. [Google Scholar] [CrossRef]
- Shaw, S.; White, J.D. Asymmetric Catalysis Using Chiral Salen–Metal Complexes: Recent Advances. Chem. Rev. 2019, 119, 9381–9426. [Google Scholar] [CrossRef]
- Akatyev, N.V.; Il’In, M.; Il’in, M., Jr.; Peregudova, S.; Peregudov, A.; Buyanovskaya, A.; Kudryavtsev, K.; Dubovik, A.; Grinberg, V.; Orlov, V.; et al. Chan-Evans-Lam C−N Coupling Promoted by a Dinuclear Positively Charged Cu(II) Complex. Catalytic Performance and Some Evidence for the Mechanism of CEL Reaction Obviating Cu(III)/Cu(I) Catalytic Cycle. ChemCatChem 2020, 12, 3010–3021. [Google Scholar] [CrossRef]
- Awasthi, A.; Leach, I.F.; Engbers, S.; Kumar, R.; Eerlapally, R.; Gupta, S.; Klein, J.E.M.N.; Draksharapu, A. Formation and Reactivity of a Fleeting NiIII Bisphenoxyl Diradical Species. Angew. Chem. 2022, 134, e202211345. [Google Scholar] [CrossRef]
- Klarner, M.; Blach, P.; Wittkaemper, H.; Jonge, N.; Papp, C.; Kempe, R. Key Parameters for the Synthesis of Active and Selective Nanostructured 3d Metal Catalysts Starting from Coordination Compounds–Case Study: Nickel Mediated Reductive Amination. ChemCatChem 2021, 13, 3257–3261. [Google Scholar] [CrossRef]
- Hahn, G.; Kunnas, P.; de Jonge, N.; Kempe, R. General synthesis of primary amines via reductive amination employing a reusable nickel catalyst. Nat. Catal. 2019, 2, 71–77. [Google Scholar] [CrossRef]
- Belokon, Y.N.; North, M.; Kublitski, V.S.; Ikonnikov, N.S.; Krasik, P.E.; Maleev, V.I. Chiral salen-metal complexes as novel catalysts for asymmetric phase transfer alkylations. Tetrahedron Lett. 1999, 40, 6105–6108. [Google Scholar] [CrossRef]
- Belokon, Y.N.; North, M.; Churkina, T.D.; Ikonnikov, N.S.; Maleev, V.I. Chiral salen–metal complexes as novel catalysts for the asymmetric synthesis of α-amino acids under phase transfer catalysis conditions. Tetrahedron 2001, 57, 2491–2498. [Google Scholar] [CrossRef]
- Belokon’, Y.N.; Bhave, D.; D’Addario, D.; Groaz, E.; Maleev, V.; North, M.; Pertrosyan, A. Catalytic, asymmetric synthesis of α,α-disubstituted amino acids. Tetrahedron Lett. 2003, 44, 2045–2048. [Google Scholar] [CrossRef]
- Belokon, Y.N.; Bhave, D.; D’Addario, D.; Groaz, E.; North, M.; Tagliazucca, V. Copper(II)salen catalysed, asymmetric synthesis of α,α-disubstituted amino acids. Tetrahedron 2004, 60, 1849–1861. [Google Scholar] [CrossRef]
- Maruoka, K. Design of Maruoka catalysts for asymmetric Phase-Transfer catalysis. Tetrahedron Lett. 2022, 110, 154159. [Google Scholar] [CrossRef]
- Corey, E.J.; Xu, F.; Noe, M.C. A Rational Approach to Catalytic Enantioselective Enolate Alkylation Using a Structurally Rigidified and Defined Chiral Quaternary Ammonium Salt under Phase Transfer Conditions. J. Am. Chem. Soc. 1997, 119, 12414–12415. [Google Scholar] [CrossRef]
- Lygo, B.; Andrews, B.I. Asymmetric Phase-Transfer Catalysis Utilizing Chiral Quaternary Ammonium Salts: Asymmetric Alkylation of Glycine Imines. Acc. Chem. Res. 2004, 37, 518–525. [Google Scholar] [CrossRef]
- Belokon, Y.N.; Fuentes, J.; North, M.; Steed, J.W. Influence of the metal and chiral diamine on metal(II)salen catalysed, asymmetric synthesis of α-methyl α-amino acids. Tetrahedron 2004, 60, 3191–3204. [Google Scholar] [CrossRef]
- Islam, S.M.; Roy, A.S.; Mondal, P.; Mobarok, M.; Roy, B.; Salam, N.; Paul, S.; Mondal, S. Olefin epoxidation with tert-butyl hydroperoxide catalyzed by functionalized polymer-supported copper(II) Schiff base complex. Mon. Chem.. 2012, 143, 815–823. [Google Scholar] [CrossRef]
- Chiang, L.; Wasinger, E.C.; Shimazaki, Y.; Young, V.; Storr, T.; Stack, T.D.P. Electronic structure and reactivity studies of a nonsymmetric one-electron oxidized CuII bis-phenoxide complex. Inorg. Chim. Acta 2018, 481, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Sampani, S.I.; Zdorichenko, V.; Danopoulou, M.; Leech, M.C.; Lam, K.; Abdul-Sada, A.; Cox, B.; Tizzard, G.J.; Coles, S.J.; Tsipis, A.; et al. Shedding light on the use of Cu(II)-salen complexes in the A3 coupling reaction. Dalton Trans. 2020, 49, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Chattaraj, P.K. Chemical Reactivity and Selectivity: Local HSAB Principle versus Frontier Orbital Theory. J. Phys. Chem. A 2001, 105, 511–513. [Google Scholar] [CrossRef]
- Scrocco, E.; Tomasi, J. Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials. Adv. Quantum Chem. 1978, 11, 115–193. [Google Scholar] [CrossRef]
- Luque, F.J.; López, J.M.; Orozco, M. Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”. Theor. Chem. Acc. 2000, 103, 343–345. [Google Scholar] [CrossRef]
- Al-Wabli, R.I.; Resmi, K.; Mary, Y.S.; Panicker, C.Y.; Attia, M.I.; El-Emam, A.A.; Van Alsenoy, C. Vibrational spectroscopic studies, Fukui functions, HOMO-LUMO, NLO, NBO analysis and molecular docking study of (E)-1-(1,3-benzodioxol-5-yl)-4,4-dimethylpent-1-en-3-one, a potential precursor to bioactive agents. J. Mol. Struct. 2016, 1123, 375–383. [Google Scholar] [CrossRef]
- Banti, D.; Belokon’, Y.N.; Fu, W.-L.S.; Groaz, E.; North, M. Mechanistic studies on the asymmetric alkylation of amino ester enolates using a copper(II)salen catalyst. Chem. Commun. 2005, 21, 2707–2709. [Google Scholar] [CrossRef]
- Larrow, J.F.; Jacobsen, E.N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C.M. A Practical Method for the Large-Scale Preparation of [N,N’-Bis(3,5-di-tertbutylsalicylidene)-1,2-cyclohexanediaminato(2-)]manganese(III) chloride, a Highly Enantioselective Epoxidation Catalyst. J. Org. Chem. 1994, 59, 1939–1942. [Google Scholar] [CrossRef]
- Tobiasz, A.; Walas, S.; Trzewik, B.; Grzybek, P.; Zaitz, M.M.; Gawin, M.; Mrowiec, H. Cu(II)-imprinted styrene–divinylbenzene beads as a new sorbent for flow injection-flame atomic absorption determination of copper. Microchem. J. 2009, 93, 87–92. [Google Scholar] [CrossRef]
- Grigg, R.; Gunaratne, H.Q.N.; Kemp, J. X=Y−ZH systems as potential 1,3-dipoles. Part 1. Background and scope. J. Chem. Soc. Perkin Trans. 1 1984, 15, 41–46. [Google Scholar] [CrossRef]
- Asami, K.; Tsukidate, K.; Iwatsuki, S.; Tani, F.; Karasawa, S.; Chiang, L.; Storr, T.; Thomas, F.; Shimazaki, Y. New Insights into the Electronic Structure and Reactivity of One-Electron Oxidized Copper(II)-(Disalicylidene) diamine Complexes. Inorg. Chem. 2012, 51, 12450–12461. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, Y.; Arai, N.; Dunn, T.J.; Yajima, T.; Tani, F.; Ramogida, C.F.; Storr, T. Influence of the chelate effect on the electronic structure of one-electron oxidized group 10 metal(II)-(disalicylidene)diamine complexes. Dalton Trans. 2011, 40, 2469–2479. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, 71, 3–8. [Google Scholar]
- North, A.C.T. D. C. Phillips and F. S. Mathews. Acta Cryst. 1968, 24, 351–359. [Google Scholar] [CrossRef]
Complex | Residual Weight, % | Start of Weight Loss, T(°C) | End of Weight Loss, T(°C) | Peak (Max) Decomposition, T(°C) |
---|---|---|---|---|
3 | 10.78 | 300 | 500 | 362 |
10 | 26.99 | 350 | 465 | 384 |
13 | 56.45 | 340 | 460 | 387 |
Bond | Crystallographic Data (Å) | DFT Data (Å) |
---|---|---|
Cu-O (I) | 1.893(3) | 1.913 |
Cu-O (II) | 1.889(3) | 1.885 |
Cu-N (I) | 1.924(4) | 1.942 |
Cu-N (II) | 1.935(4) | 1.947 |
Entry | Catalyst 1 (mol%) | Base (Equiv.) | Time (h) | Conversion (%) * |
---|---|---|---|---|
1 | 10 | NaOH (1.2) | 24 | 74 |
2 | 2 | NaOH (1.2) | 24 | traces |
3 | 10 | NaOH (1.2) | 16 | 39 |
4 | 10 | KOH (2.0) | 72 | 73 |
5 | 10 | KOH (1.2) | 24 | 89 |
6 | 5 | NaOH (1.5) | 24 | 95 |
7 | 10 | NaOH (1.5) | 24 | >99 |
8 | 10 | NaOH (3.0) | 24 | 95 |
Catalyst | Entry | 17 | Entry | 18 | ||
---|---|---|---|---|---|---|
ee, a % | Yield, b % | ee, a % | Yield, b % | |||
1 | 1 | 66.66/90.90 c | 65.6/45.5 | 15 | 70.2/95.8 c | 79.8/60.4 |
2 | 2 | 22.44 | 43.4 | 16 | 28.56 | 42.6 |
3 | 3 | 15.67 | 32.5 | 17 | 17.95 | 50.2 |
4 | 4 | 7.32 | 5.60 | 18 | 9.92 | 7.3 |
5 | 5 | 10․12 | 33.5 | 19 | 17 | 7.3 |
6 | 6 | 7.44 | 7.0 | 20 | 15.1 | 18.5 |
7 | 7 | 7.88 | 5.2 | 21 | 14.24 | 42.5 |
8 | 8 | 26.23 | 41.2 | 22 | 37.97 | 37.4 |
9 | 9 | 10.12 | 25.6 | 23 | 20.15 | 51.6 |
10 | 10 | 3.4 | 36.9 | 24 | 17.6 | 48.9 |
11 | 11 | 0 | 11.2 | 25 | 0 | 70.4 |
12 | 12 | 4.08 | 35.6 | 26 | 17.52 | 9.4 |
13 | 13 | 9.89 | 57.0 | 27 | 17.6 | 8.5 |
14 | 14 | 0 | 4.6 | 28 | 0 | 0.4 |
Entry | Catalyst | ee, a % | Yield, b % |
---|---|---|---|
1 | 1 | 78.25/98.38 c | 81.3/65.4 |
2 | 2 | 27.67 | 72.3 |
3 | 5 | 30.36 | 35.5 |
4 | 6 | 21.53 | 69.5 |
5 | 8 | 42.88/79.78 c | 49.4 |
6 | 9 | 16.28 | 72.3 |
7 | 12 | 15.6 | 66.3 |
8 | 13 | 10.97 | 47.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tovmasyan, A.S.; Mkrtchyan, A.F.; Khachatryan, H.N.; Hayrapetyan, M.V.; Hakobyan, R.M.; Poghosyan, A.S.; Tsaturyan, A.H.; Minasyan, E.V.; Maleev, V.I.; Larionov, V.A.; et al. Synthesis, Characterization, and Study of Catalytic Activity of Chiral Cu(II) and Ni(II) Salen Complexes in the α-Amino Acid C-α Alkylation Reaction. Molecules 2023, 28, 1180. https://doi.org/10.3390/molecules28031180
Tovmasyan AS, Mkrtchyan AF, Khachatryan HN, Hayrapetyan MV, Hakobyan RM, Poghosyan AS, Tsaturyan AH, Minasyan EV, Maleev VI, Larionov VA, et al. Synthesis, Characterization, and Study of Catalytic Activity of Chiral Cu(II) and Ni(II) Salen Complexes in the α-Amino Acid C-α Alkylation Reaction. Molecules. 2023; 28(3):1180. https://doi.org/10.3390/molecules28031180
Chicago/Turabian StyleTovmasyan, Anna S., Anna F. Mkrtchyan, Hamlet N. Khachatryan, Mary V. Hayrapetyan, Robert M. Hakobyan, Artavazd S. Poghosyan, Avetis H. Tsaturyan, Ela V. Minasyan, Victor I. Maleev, Vladimir A. Larionov, and et al. 2023. "Synthesis, Characterization, and Study of Catalytic Activity of Chiral Cu(II) and Ni(II) Salen Complexes in the α-Amino Acid C-α Alkylation Reaction" Molecules 28, no. 3: 1180. https://doi.org/10.3390/molecules28031180
APA StyleTovmasyan, A. S., Mkrtchyan, A. F., Khachatryan, H. N., Hayrapetyan, M. V., Hakobyan, R. M., Poghosyan, A. S., Tsaturyan, A. H., Minasyan, E. V., Maleev, V. I., Larionov, V. A., Ayvazyan, A. G., Shibata, N., Roviello, G. N., & Saghyan, A. S. (2023). Synthesis, Characterization, and Study of Catalytic Activity of Chiral Cu(II) and Ni(II) Salen Complexes in the α-Amino Acid C-α Alkylation Reaction. Molecules, 28(3), 1180. https://doi.org/10.3390/molecules28031180