The Formulation and Evaluation of Deep Eutectic Vehicles for the Topical Delivery of Azelaic Acid for Acne Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rheological, Solubility, and Contact Angle Studies
2.2. Attenuated Total Reflectance—Fourier Transformed Infra-Red (ATR–FTIR)
2.3. Differential Scanning Calorimetry (DSC) Study
2.4. High-Performance Liquid Chromatography (HPLC)
2.5. Diffusion Study
2.6. Microbiological Study
2.7. Stability Results
3. Materials and Methods
3.1. Materials
3.2. Preparation of Deep Eutectic Systems (DESs)
3.3. pH Measurement of DESs
3.4. Solubility Study
3.5. High-Performance Liquid Chromatography (HPLC)
3.6. Attenuated Total Reflectance—Fourier Transformed Infra-Red (ATR-FTIR) Study
3.7. Differential Scanning Calorimetry (DSC) Study
3.8. Rheology Study
3.9. Measurement of Partition Coefficient
3.10. Spreadability
3.11. In Vitro Drug Release with Franz Diffusion Cells
3.12. Contact Angle Measurements
3.13. Microbiological Study
3.14. Skin Irritation/Corrosive Potential Test
3.15. Stability Study of the Selected AzA Formula
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaenglein, A.L.; Pathy, A.L.; Schlosser, B.J.; Alikhan, A.; Baldwin, H.E.; Berson, D.S.; Bowe, W.P.; Graber, E.M.; Harper, J.C.; Kang, S.; et al. Guidelines of Care for the Management of Acne Vulgaris. J. Am. Acad. Dermatol. 2016, 74, 945–973.e33. [Google Scholar] [CrossRef]
- Shannon, J.F. Why Do Humans Get Acne? A Hypothesis. Med. Hypoth. 2020, 134, 109412. [Google Scholar] [CrossRef]
- Layton, A.M.; Thiboutot, D.; Tan, J. Reviewing the global burden of acne: How could we improve care to reduce the burden? Br. J. Dermatol. 2021, 184, 219–225. [Google Scholar] [CrossRef]
- Kumar, B.; Pathak, R.; Mary, P.B.; Jha, D.; Sardana, K.; Gautam, H.K. New insights into acne pathogenesis: Exploring the role of acne-associated microbial populations. Dermatol. Sin. 2016, 34, 67–73. [Google Scholar] [CrossRef]
- Cogen, A.L.; Nizet, V.; Gallo, R.L. Skin microbiota: A source of disease or defense? Br. J. Dermatol. 2008, 158, 442–455. [Google Scholar] [CrossRef]
- Goodarzi, A.; Mozafarpoor, S.; Bodaghabadi, M.; Mohamadi, M. The potential of probiotics for treating acne vulgaris: A review of literature on acne and microbiota. Dermatol. Ther. 2020, 33, e13279. [Google Scholar] [CrossRef] [PubMed]
- Schulte, B.C.; Wu, W.; Rosen, T. Azelaic Acid: Evidence-based Update on Mechanism of Action and Clinical Application. J. Drugs. Dermatol. 2015, 14, 964–968. [Google Scholar] [PubMed]
- Searle, T.; Ali, F.R.; Al-Niaimi, F. The versatility of azelaic acid in dermatology. J. Dermatol. Treat. 2020, 33, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Breathnach, A.S. Pharmacological Properties of Azelaic Acid. Clin. Drug Investig. 1995, 10, 27–33. [Google Scholar] [CrossRef]
- Savage, L.J.; Layton, A.M. Treating acne vulgaris: Systemic, local and combination therapy. Expert Rev. Clin. Pharmacol. 2010, 3, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Dongdong, Z.; Jin, Y.; Yang, T.; Yang, Q.; Wu, B.; Chen, Y.; Luo, Z.; Liang, L.; Liu, Y.; Xu, A.; et al. Antiproliferative and Immunoregulatory Effects of Azelaic Acid Against Acute Myeloid Leukemia via the Activation of Notch Signaling Pathway. Front. Pharmacol. 2019, 10, 1396. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Ma, L.; Xu, T.; Pan, Y.; Wang, Q.; Wei, Y.; Shu, Y. Potential Regulatory Roles of MicroRNAs and Long Noncoding RNAs in Anticancer Therapies. Mol. Ther. Nucleic Acids 2018, 13, 233–243. [Google Scholar] [CrossRef]
- Tomić, I.; Juretić, M.; Jug, M.; Pepić, I.; Cetina Čižmek, B.; Filipović-Grčić, J. Preparation of in situ hydrogels loaded with azelaic acid nanocrystals and their dermal application performance study. Int. J. Pharm. 2019, 563, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.-H.; Chen, P.-K.; Fang, C.-W.; Lin, Y.-C.; Wu, P.-C. Preparation and Evaluation of Azelaic Acid Topical Microemulsion Formulation: In Vitro and In Vivo Study. Pharmaceutics 2021, 13, 410. [Google Scholar] [CrossRef] [PubMed]
- Apriani, E.F.; Rosana, Y.; Iskandarsyah, I. Formulation, characterization, and in vitro testing of azelaic acid ethosome-based cream against Propionibacterium acnes for the treatment of acne. J. Adv. Pharm. Technol. Res. 2019, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Akl, E.M. Liposomal azelaic acid 20% cream vs hydroquinone 4% cream as adjuvant to oral tranexamic acid in melasma: A comparative study. J. Dermatol. Treat. 2021, 33, 2008–2013. [Google Scholar] [CrossRef] [PubMed]
- Hashim, P.W.; Chen, T.; Harper, J.C.; Kircik, L.H. The Efficacy and Safety of Azelaic Acid 15% Foam in the Treatment of Facial Acne Vulgaris. J. Drugs Dermatol. 2018, 17, 641–645. [Google Scholar]
- Bisht, A.; Hemrajani, C.; Rathore, C.; Dhiman, T.; Rolta, R.; Upadhyay, N.; Nidhi, P.; Gupta, G.; Dua, K.; Chellappan, D.K.; et al. Hydrogel composite containing azelaic acid and tea tree essential oil as a therapeutic strategy for Propionibacterium and testosterone-induced acne. Drug Deliv. Transl. Res. 2021, 12, 2501–2517. [Google Scholar] [CrossRef]
- Tarassoli, Z.; Najjar, R.; Amani, A. Formulation and optimization of lemon balm extract loaded azelaic acid-chitosan nanoparticles for antibacterial applications. J. Drug Deliv. Sci. Technol. 2021, 65, 102687. [Google Scholar] [CrossRef]
- Al-Akayleh, F.; Mohammed Ali, H.H.; Ghareeb, M.M.; Al-Remawi, M. Therapeutic deep eutectic system of capric acid and menthol: Characterization and pharmaceutical application. J. Drug Deliv. Sci. Technol. 2019, 53, 101159. [Google Scholar] [CrossRef]
- Alkhawaja, B.; Al-Akayleh, F.; Al-Khateeb, A.; Nasereddin, J.; Ghanim, B.Y.; Bolhuis, A.; Jaber, N.; Al-Remawi, M.; Qinna, N.A. Deep Eutectic Liquids as a Topical Vehicle for Tadalafil: Characterisation and Potential Wound Healing and Antimicrobial Activity. Molecules 2023, 28, 2402. [Google Scholar] [CrossRef] [PubMed]
- Al-Akayleh, F.; Adwan, S.; Khanfar, M.; Idkaidek, N.; Al-Remawi, M. A Novel Eutectic-Based Transdermal Delivery System for Risperidone. AAPS Pharm. Sci. Tech. 2020, 22, 4. [Google Scholar] [CrossRef] [PubMed]
- Al-Akayleh, F.; Khalid, R.M.; Hawash, D.; Al-Kaissi, E.; Al-Adham, I.S.I.; Al-Muhtaseb, N.; Jaber, N.; Al-Remawi, M.; Collier, P.J. Antimicrobial potential of natural deep eutectic solvents. Lett. Appl. Microbiol. 2022, 75, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Marchel, M.; Cieśliński, H.; Boczkaj, G. Thermal Instability of Choline Chloride-Based Deep Eutectic Solvents and Its Influence on Their Toxicity─Important Limitations of DESs as Sustainable Materials. Ind. Eng. Chem. Res. 2022, 61, 11288–11300. [Google Scholar] [CrossRef]
- Ko, J.; Mandal, A.; Dhawan, S.; Shevachman, M.; Mitragotri, S.; Joshi, N. Clinical translation of choline and geranic acid deep eutectic solvent. Bioeng. Transl. Med. 2020, 6, e10191. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Akhlaq, M.; Naz, S.; Uroos, M. An overview of biomedical applications of choline geranate (CAGE): A major breakthrough in drug delivery. RSC Adv. 2022, 12, 25977–25991. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, J.; Zhang, X.; Liang, Y.; Cheng, X.; Zhu, X. High pressure-induced glass transition and stability of choline chloride/malonic acidic deep eutectic solvents with different molar ratios. J. Mol. Liq. 2022, 364, 120055. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Sarmad, S.; Xie, Y.; Mikkola, J.-P.; Ji, X. Screening of deep eutectic solvents (DESs) as green CO2 sorbents: From solubility to viscosity. New J. Chem. 2017, 41, 290–301. [Google Scholar] [CrossRef]
- Abdkarimi, F.; Haghtalab, A. Solubility measurement and thermodynamic modeling of sertraline hydrochloride and clopidogrel bisulfate in deep eutectic solvent of choline chloride and malonic acid. J. Mol. Liq. 2021, 344, 117940. [Google Scholar] [CrossRef]
- Soni, J.; Sahiba, N.; Sethiya, A.; Agarwal, S. Polyethylene glycol: A promising approach for sustainable organic synthesis. J. Mol. Liq. 2020, 315, 113766. [Google Scholar] [CrossRef]
- Li, N.; Wu, X.; Jia, W.; Zhang, M.C.; Tan, F.; Zhang, J. Effect of ionization and vehicle on skin absorption and penetration of azelaic acid. Drug Dev. Ind. Pharm. 2012, 38, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.H.; Ghareeb, M.M.; Al-Remawi, M.; Al-Akayleh, F.T. New insight into single phase formation of capric acid/menthol eutectic mixtures by Fourier-transform infrared spectroscopy and differential scanning calorimetry. Trop. J. Pharm. Res. 2020, 19, 361–369. [Google Scholar] [CrossRef]
- Arpa, M.D.; Seçen, İ.M.; Erim, Ü.C.; Hoş, A.; Üstündağ Okur, N. Azelaic acid loaded chitosan and HPMC based hydrogels for treatment of acne: Formulation, characterization, in vitro-ex vivo evaluation. Pharm. Dev. Technol. 2022, 27, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, J.; Apriyani, M.G.; Foe, K.; Manosroi, A. Enhancement of the release of azelaic acid through the synthetic membranes by inclusion complex formation with hydroxypropyl-beta-cyclodextrin. Int. J. Pharm. Res. 2005, 293, 235–240. [Google Scholar] [CrossRef]
- Morrison, H.G.; Sun, C.C.; Neervannan, S. Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int. J. Pharm. 2009, 378, 136–139. [Google Scholar] [CrossRef]
- Ng, S.F.; Rouse, J.; Sanderson, D.; Eccleston, G. A Comparative Study of Transmembrane Diffusion and Permeation of Ibuprofen across Synthetic Membranes Using Franz Diffusion Cells. Pharmaceutics 2010, 2, 209–223. [Google Scholar] [CrossRef]
- Fallacara, A.; Marchetti, F.; Pozzoli, M.; Citernesi, U.R.; Manfredini, S.; Vertuani, A.S. Formulation and Characterization of Native and Crosslinked Hyaluronic Acid Microspheres for Dermal Delivery of Sodium Ascorbyl Phosphate: A Comparative Study. Pharmaceutics 2018, 10, 254. [Google Scholar] [CrossRef]
- Kumar Jangir, A.; Patel, D.; More, R.; Parmar, A.; Kuperkar, K. New insight into experimental and computational studies of Choline chloride-based ‘green’ternary deep eutectic solvent (TDES). J. Mol. Struct. 2019, 1181, 295–299. [Google Scholar] [CrossRef]
- Holland, K.; Bojar, R. Antimicrobial effects of azelaic acid. J. Dermatol. Treat. 1993, 4, S8–S11. [Google Scholar] [CrossRef]
- Al-Marabeh, S.; Khalil, E.; Khanfar, M.; Al-Bakri, A.G.; Alzweiri, M. A prodrug approach to enhance azelaic acid percutaneous availability. Pharm. Dev. Technol. 2017, 22, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Zainal-Abidin, M.H.; Hayyan, M.; Ngoh, G.C.; Wong, W.F.; Looi, C.Y. Emerging frontiers of deep eutectic solvents in drug discovery and drug delivery systems. J. Control. Release 2019, 316, 168–195. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; Makhlouf, Z.; Akbar, N.; Khamis, M.; Ibrahim, T.; Khan, A.S.; Khan, N.A. Antiamoebic properties of salicylic acid-based deep eutectic solvents for the development of contact lens disinfecting solutions against Acanthamoeba. Mol. Biochem. Parasitol. 2022, 250, 111493. [Google Scholar] [CrossRef]
- Ubaydee, A.H.N.; Issa, R.; Hajleh, M.N.A.; Ghanim, B.Y.; Al-Akayleh, F.; Qinna, N.A. The effect of Medicago sativa extract and light on skin hypopigmentation disorders in C57/BL6 mice. J. Cosmet. Dermatol. 2022, 21, 6270–6280. [Google Scholar] [CrossRef] [PubMed]
- Ghasemiyeh, P.; Mohammadi-Samani, S.; Noorizadeh, K.; Zadmehr, O.; Rasekh, S.; Mohammadi-Samani, S.; Dehghan, D. Novel topical drug delivery systems in acne management: Molecular mechanisms and role of targeted delivery systems for better therapeutic outcomes. J. Drug Deliv. Sci. Technol. 2022, 74, 103595. [Google Scholar] [CrossRef]
- Ugandar, R.E.; Deivi, K.S. Formulation and evaluation of natural palm oil based vanishing cream. Int. J. Pharm. Sci. Res. 2013, 4, 3375. [Google Scholar]
DESs | AzA Solubility mg/g IL Mean ± SD | pH ± SD | Log p | Viscosity (mPa.s) ± SD at 30 °C | Spreadability Cm (Mean ± SD) | Contact Angle (Θ) |
---|---|---|---|---|---|---|
MC11 | NM | NM | NM | 15,872 ± 20.1 | 2.91 ± 0.13 | NM |
MC12 | NM | NM | NM | 51,950 ± 25.1 | 2.91 ± 0.13 | NM |
MC21 | NM | NM | NM | 403,000 ± 25.1 | 2.91 ± 0.13 | NM |
MCP111 | 156.5 ± 7.1 | 3.01 ± 0.01 | 2.12 | 1504 ± 12.1 | 5.2 ± 0.01 | 75 ± 3.4 |
MCP112 | 172.25 ± 8.2 | 3.11 ± 0.02 | 2.40 | 1076 ± 7.2 | 8.0 ± 0.12 | 70 ± 2.9 |
MCP114 | 178.0 ± 6.8 | 3.00 ± 0.01 | 2.65 | 721 ± 5.1 | 9.2 ± 0.21 | 65 ± 2.4 |
MCP116 | 194.1 ± 10.1 | 3.13 ± 0.01 | 2.91 | 340 ± 7.1 | 11.4 ± 0.31 | 53 ± 2.1 |
MCP121 | 92.0 ± 7.6 | 2.60 ± 0.01 | 2.12 | 5120 ± 19.1 | 3.01 ± 0.13 | 79 ± 3.4 |
MCP122 | 130.5 ± 8.9 | 2.61 ± 0.02 | 2.21 | 4440 ± 10.2 | 5.5 ± 0.16 | 76 ± 2.9 |
MCP124 | 145.5 ± 8.1 | 2.62 ± 0.01 | 2.21 | 822 ± 9.2 | 7.7 ± 0.12 | 72 ± 2.4 |
MCP126 | 152.6 ± 10.1 | 2.62 ± 0.015 | 2.45 | 646 ± 7.1 | 8.3 ± 0.21 | 69 ± 2.1 |
Skinorin® | - | - | - | 380 ± 5.1 | 7.3 ± 0.11 | - |
Azelaic acid | ≈0.24 g/100 g | - | 2.01 | - | - | - |
Formulation | Inhibition Zone (mm) ± SD |
---|---|
MCP116, with AzA | 28.62 ± 0.85 * |
MCP116, without AzA | 09.03 ± 0.90 |
Skinorine® | 21.50 ± 0.81 |
Erythema | |||||
Rabbit | Evaluation after removal of the test substance | ||||
0 min | 60 min | 24 h | 48 h | 72 h | |
1 (Initial) | 0 | 0 | 0 | 0 | 0 |
2 (Confirmatory) | 0 | 0 | 0 | 0 | 0 |
Edema | |||||
Rabbit | Evaluation after removal of test substance | ||||
0 min | 60 min | 24 h | 48 h | 72 h | |
1 (Initial) | 0 | 0 | 0 | 0 | 0 |
2 (Confirmatory) | 0 | 0 | 0 | 0 | 0 |
Code | Components | Ratio (MA:CC: PEG (MCP) Respectively) |
---|---|---|
MC11 | MA: CC | 1:1 |
MC12 | MA: CC | 1:2 |
MC21 | MA: CC | 2:1 |
MCP111 | MA:CC: PEG400 | 1:1:1 |
MCP112 | MA:CC: PEG400 | 1:1:2 |
MCP114 | MA:CC: PEG400 | 1:1:4 |
MCP116 | MA:CC: PEG400 | 1:1:6 |
MCP121 | MA:CC: PEG400 | 1:2:1 |
MCP122 | MA:CC: PEG400 | 1:2:2 |
MCP124 | MA:CC: PEG400 | 1:2:4 |
MCP126 | MA:CC: PEG400 | 1:2:6 |
Erythema and Eschar Formation | Value | Edema Formation | Value |
---|---|---|---|
No erythema | 0 | No edema | 0 |
Very slight erythema (barely perceptible) | 1 | Very slight edema (barely perceptible) | 1 |
Well-defined erythema | 2 | Slight edema (edges of area well defined by definite raising) | 2 |
Moderate to severe erythema | 3 | Moderate edema (raised approximately 1 mm) | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luhaibi, D.K.; Ali, H.H.M.; Al-Ani, I.; Shalan, N.; Al-Akayleh, F.; Al-Remawi, M.; Nasereddin, J.; Qinna, N.A.; Al-Adham, I.; Khanfar, M. The Formulation and Evaluation of Deep Eutectic Vehicles for the Topical Delivery of Azelaic Acid for Acne Treatment. Molecules 2023, 28, 6927. https://doi.org/10.3390/molecules28196927
Luhaibi DK, Ali HHM, Al-Ani I, Shalan N, Al-Akayleh F, Al-Remawi M, Nasereddin J, Qinna NA, Al-Adham I, Khanfar M. The Formulation and Evaluation of Deep Eutectic Vehicles for the Topical Delivery of Azelaic Acid for Acne Treatment. Molecules. 2023; 28(19):6927. https://doi.org/10.3390/molecules28196927
Chicago/Turabian StyleLuhaibi, Dhari K., Hiba H. Mohammed Ali, Israa Al-Ani, Naeem Shalan, Faisal Al-Akayleh, Mayyas Al-Remawi, Jehad Nasereddin, Nidal A. Qinna, Isi Al-Adham, and Mai Khanfar. 2023. "The Formulation and Evaluation of Deep Eutectic Vehicles for the Topical Delivery of Azelaic Acid for Acne Treatment" Molecules 28, no. 19: 6927. https://doi.org/10.3390/molecules28196927
APA StyleLuhaibi, D. K., Ali, H. H. M., Al-Ani, I., Shalan, N., Al-Akayleh, F., Al-Remawi, M., Nasereddin, J., Qinna, N. A., Al-Adham, I., & Khanfar, M. (2023). The Formulation and Evaluation of Deep Eutectic Vehicles for the Topical Delivery of Azelaic Acid for Acne Treatment. Molecules, 28(19), 6927. https://doi.org/10.3390/molecules28196927