Editorial for Special Issue: “Recent Advances in Green Solvents”
1. Introduction
2. Contributions
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haghbakhsh, R.; Raeissi, S.; Duarte, A.R.C. Group contribution and atomic contribution models for the prediction of various physical properties of deep eutectic solvents. Sci. Rep. 2021, 11, 6684. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Domínguez de María, P.; Guajardo, N.; González-Sabín, J. Recent granted patents related to Deep Eutectic Solvents. Curr. Opin. Green Sustain. Chem. 2022, 38, 100712. [Google Scholar] [CrossRef]
- Huang, H.L.; Lin, P.C.; Wang, H.T.; Huang, H.H.; Wu, C.H. Ionic Liquid Extraction Behavior of Cr(VI) Absorbed on Humic Acid–Vermiculite. Molecules 2021, 26, 7478. [Google Scholar] [CrossRef] [PubMed]
- Kostenko, M.; Parenago, O. Adsorption of N,N,N′,N′-Tetraoctyl Diglycolamide on Hypercrosslinked Polysterene from a Supercritical Carbon Dioxide Medium. Molecules 2022, 27, 31. [Google Scholar] [CrossRef] [PubMed]
- Nowosielski, B.; Jamrógiewicz, M.; Łuczak, J.; Warmińska, D. Novel Binary Mixtures of Alkanolamine Based Deep Eutectic Solvents with Water—Thermodynamic Calculation and Correlation of Crucial Physicochemical Properties. Molecules 2022, 27, 788. [Google Scholar] [CrossRef] [PubMed]
- Zailani, N.H.Z.O.Z.; Yunus, N.M.; Rahim, A.H.A.; Bustam, M.A. Experimental Investigation on Thermophysical Properties of Ammonium-Based Protic Ionic Liquids and Their Potential Ability towards CO2 Capture. Molecules 2022, 27, 851. [Google Scholar] [CrossRef] [PubMed]
- da Silva, G.F.; de Souza Júnior, E.T.; Almeida, R.N.; Fianco, A.L.B.; Santo, A.T.E.; Lucas, A.M.; Vargas, R.M.F.; Cassel, E. The Response Surface Optimization of Supercritical CO2 Modified with Ethanol Extraction of p-Anisic Acid from Acacia mearnsii Flowers and Mathematical Modeling of the Mass Transfer. Molecules 2022, 27, 970. [Google Scholar] [CrossRef] [PubMed]
- Peyrovedin, H.; Haghbakhsh, R.; Duarte, A.R.C.; Shariati, A. Deep Eutectic Solvents as Phase Change Materials in Solar Thermal Power Plants: Energy and Exergy Analyses. Molecules 2022, 27, 1427. [Google Scholar] [CrossRef] [PubMed]
- Chinchilla, M.I.; Mato, F.A.; Martín, A.; Bermejo, M.D. Hydrothermal CO2 Reduction by Glucose as Reducing Agent and Metals and Metal Oxides as Catalysts. Molecules 2022, 27, 1652. [Google Scholar] [CrossRef] [PubMed]
- Ghigo, G.; Bonomo, M.; Antenucci, A.; Reviglio, C.; Dughera, S. Copper-Free Halodediazoniation of Arenediazonium Tetrafluoroborates in Deep Eutectic Solvents-like Mixtures. Molecules 2022, 27, 1909. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Park, H.Y.; Park, J. Enhanced Extraction Efficiency of Flavonoids from Pyrus ussuriensis Leaves with Deep Eutectic Solvents. Molecules 2022, 27, 2798. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zuo, T.; Han, Z.; Li, Y.; Gärtner, S.; Chen, H.; Yin, W.; Hanm, C.C.; Cheng, H. Neutron Total Scattering Investigation of the Dissolution Mechanism of Trehalose in Alkali/Urea Aqueous Solution. Molecules 2022, 27, 3395. [Google Scholar] [CrossRef] [PubMed]
- Panić, M.; Radović, M.; Bubalo, M.C.; Radošević, K.; Rogošić, M.; Coutinho, J.A.P.; Redovniković, I.R.; Tušek, A.J. Prediction of pH Value of Aqueous Acidic and Basic Deep Eutectic Solvent Using COSMO-RS σ Profiles’ Molecular Descriptors. Molecules 2022, 27, 4489. [Google Scholar] [CrossRef] [PubMed]
- Osman, W.N.A.W.; Badrol, N.A.I.; Samsuri, S. Biodiesel Purification by Solvent-Aided Crystallization Using 2-Methyltetrahydrofuran. Molecules 2023, 28, 1512. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghbakhsh, R.; Raeissi, S.; Craveiro, R. Editorial for Special Issue: “Recent Advances in Green Solvents”. Molecules 2023, 28, 5983. https://doi.org/10.3390/molecules28165983
Haghbakhsh R, Raeissi S, Craveiro R. Editorial for Special Issue: “Recent Advances in Green Solvents”. Molecules. 2023; 28(16):5983. https://doi.org/10.3390/molecules28165983
Chicago/Turabian StyleHaghbakhsh, Reza, Sona Raeissi, and Rita Craveiro. 2023. "Editorial for Special Issue: “Recent Advances in Green Solvents”" Molecules 28, no. 16: 5983. https://doi.org/10.3390/molecules28165983
APA StyleHaghbakhsh, R., Raeissi, S., & Craveiro, R. (2023). Editorial for Special Issue: “Recent Advances in Green Solvents”. Molecules, 28(16), 5983. https://doi.org/10.3390/molecules28165983