Tröger’s Base-Derived Thermally Activated Delayed Fluorescence Dopant for Efficient Deep-Blue Organic Light-Emitting Diodes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Theoretical Investigation
2.3. Electrochemical Properties
2.4. Photophysical Properties
2.5. Electroluminescence Performance
3. Experimental Section
3.1. General Procedures
3.2. Synthesis of Materials
3.2.1. Synthesis of ((4,10-Dimethyl-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(4,1-phenylene))bis((4-bromophenyl)methanone) (TB-BP-Br)
3.2.2. Synthesis of (4,10-Dimethyldibenzo[b,f][1,5]diazocine-5,11(6H,12H)-diyl)bis((4-bromophenyl)methanone) (TB-PhBr)
3.2.3. Synthesis of ((4,10-dimethyl-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(4,1-phenylene))bis((4-(9,9-dimethylacridin-10(9H)-yl)phenyl)methanone) (TB-BP-DMAC)
3.2.4. Synthesis of (4,10-dimethyldibenzo[b,f][1,5]diazocine-5,11(6H,12H)-diyl)bis((4-(9,9-dimethylacridin-10(9H)-yl)phenyl)methanone) (TB-DMAC)
3.3. Thermogravimetric Analyses
3.4. Electrochemical Measurement
3.5. Photophysical Measurements
3.6. Computational Methodology
3.7. Device Fabrication and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tang, C.W.; Vanslyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Baldo, M.A.; O’Brien, D.F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.E.; Forrest, S.R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395, 151–154. [Google Scholar] [CrossRef]
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238. [Google Scholar] [CrossRef]
- Song, W.; Lee, J.Y. Degradation Mechanism and Lifetime Improvement Strategy for Blue Phosphorescent Organic Light-Emitting Diodes. Adv. Opt. Mater. 2017, 5, 1600901. [Google Scholar] [CrossRef]
- Sivasubramaniam, V.; Brodkorb, F.; Hanning, S.; Loebl, H.P.; van Elsbergen, V.; Boerner, H.; Scherf, U.; Kreyenschmidt, M. Fluorine cleavage of the light blue heteroleptic triplet emitter FIrpic. J. Fluor. Chem. 2009, 130, 640–649. [Google Scholar] [CrossRef]
- Udagawa, K.; Sasabe, H.; Cai, C.; Kido, J. Low-driving-voltage blue phosphorescent organic light-emitting devices with external quantum efficiency of 30%. Adv. Mater. 2014, 26, 5062–5066. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.K.; Kim, D.; Bredas, J.L. Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight. Acc. Chem. Res. 2018, 51, 2215–2224. [Google Scholar] [CrossRef]
- Adachi, C. Third-generation organic electroluminescence materials. Jpn. J. Appl. Phys. 2014, 53, 060101. [Google Scholar] [CrossRef]
- Wong, M.Y.; Zysman-Colman, E. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 2017, 29, 1605444. [Google Scholar] [CrossRef] [Green Version]
- Dias, F.B.; Penfold, T.J.; Monkman, A.P. Photophysics of thermally activated delayed fluorescence molecules. Methods Appl. Fluoresc. 2017, 5, 012001. [Google Scholar] [CrossRef]
- Cui, L.-S.; Gillett, A.J.; Zhang, S.-F.; Ye, H.; Liu, Y.; Chen, X.-K.; Lin, Z.-S.; Evans, E.W.; Myers, W.K.; Ronson, T.K.; et al. Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nat. Photonics 2020, 14, 636–642. [Google Scholar] [CrossRef]
- Ji, S.-C.; Zhao, T.; Wei, Z.; Meng, L.; Tao, X.-D.; Yang, M.; Chen, X.-L.; Lu, C.-Z. Manipulating excited states via Lock/Unlock strategy for realizing efficient thermally activated delayed fluorescence emitters. Chem. Eng. J. 2022, 435, 134868. [Google Scholar] [CrossRef]
- He, J.-L.; Kong, F.-C.; Sun, B.; Wang, X.-J.; Tian, Q.-S.; Fan, J.; Liao, L.-S. Highly efficient deep-red TADF organic light-emitting diodes via increasing the acceptor strength of fused polycyclic aromatics. Chem. Eng. J. 2021, 424, 130470. [Google Scholar] [CrossRef]
- Godumala, M.; Choi, S.; Cho, M.J.; Choi, D.H. Thermally activated delayed fluorescence blue dopants and hosts: From the design strategy to organic light-emitting diode applications. J. Mater. Chem. C 2016, 4, 11355–11381. [Google Scholar] [CrossRef]
- Cai, X.; Su, S.-J. Marching Toward Highly Efficient, Pure-Blue, and Stable Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes. Adv. Funct. Mater. 2018, 28, 1802558. [Google Scholar] [CrossRef]
- Im, Y.; Byun, S.Y.; Kim, J.H.; Lee, D.R.; Oh, C.S.; Yook, K.S.; Lee, J.Y. Recent Progress in High-Efficiency Blue-Light-Emitting Materials for Organic Light-Emitting Diodes. Adv. Funct. Mater. 2017, 27, 1603007. [Google Scholar] [CrossRef]
- Bui, T.T.; Goubard, F.; Ibrahim-Ouali, M.; Gigmes, D.; Dumur, F. Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs). Beilstein J. Org. Chem. 2018, 14, 282–308. [Google Scholar] [CrossRef] [Green Version]
- Bui, T.-T.; Goubard, F.; Ibrahim-Ouali, M.; Gigmes, D.; Dumur, F. Thermally Activated Delayed Fluorescence Emitters for Deep Blue Organic Light Emitting Diodes: A Review of Recent Advances. Appl. Sci. 2018, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Chen, C.-H.; Lee, P.-H.; Lin, H.-Y.; Leung, M.-k.; Chiu, T.-L.; Lin, C.-F. Blue organic light-emitting diodes: Current status, challenges, and future outlook. J. Mater. Chem. C 2019, 7, 5874–5888. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M.R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 2018, 3, 18020. [Google Scholar] [CrossRef]
- Jeon, S.K.; Lee, H.L.; Yook, K.S.; Lee, J.Y. Recent Progress of the Lifetime of Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescent Material. Adv. Mater. 2019, 31, e1803524. [Google Scholar] [CrossRef]
- Jang, H.J.; Lee, J.Y.; Kim, J.; Kwak, J.; Park, J.-H. Progress of display performances: AR, VR, QLED, and OLED. J. Inf. Disp. 2020, 21, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wu, S.; Shan, G.; Cheng, G. Recent Progress in Blue Thermally Activated Delayed Fluorescence Emitters and Their Applications in OLEDs: Beyond Pure Organic Molecules with Twist D-π-A Structures. Micromachines 2022, 13, 2150. [Google Scholar] [CrossRef]
- Shi, C.; Liu, D.; Li, J.; He, Z.; Song, K.; Liu, B.; Wu, Q.; Xu, M. tert-Butyltriazine-Diphenylaminocarbazole based TADF materials: π-Bridge modification for enhanced kRISC and efficiency stability. Dyes Pigm. 2022, 204, 110430. [Google Scholar] [CrossRef]
- Konidena, R.K.; Lee, J.Y. Molecular Design Tactics for Highly Efficient Thermally Activated Delayed Fluorescence Emitters for Organic Light Emitting Diodes. Chem. Rec. 2019, 19, 1499–1517. [Google Scholar] [CrossRef]
- Che, W.; Xie, Y.; Li, Z. Structural Design of Blue-to-Red Thermally-Activated Delayed Fluorescence Molecules by Adjusting the Strength between Donor and Acceptor. Asian J. Org. Chem. 2020, 9, 1262–1276. [Google Scholar] [CrossRef]
- Huang, W.; Xie, L.; Feng, Q.; Wang, H.; Qian, Y.; Zhou, T. Recent Advances in Substituent Effects of Blue Thermally Activated Delayed Fluorescence Small Molecules. Acta Chim. Sin. 2021, 79, 557–574. [Google Scholar] [CrossRef]
- Zhao, W.; He, Z.; Lam, J.W.Y.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B.Z. Rational Molecular Design for Achieving Persistent and Efficient Pure Organic Room-Temperature Phosphorescence. Chem 2016, 1, 592–602. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.H.; Lee, K.H.; Lee, J.Y. Benzoylphenyltriazine as a new acceptor of donor–acceptor type thermally-activated delayed-fluorescent emitters. J. Ind. Eng. Chem. 2021, 102, 226–232. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, X.; Zhang, D.; Cao, X.; Jiang, T.; Zhang, X.; Tao, Y. Linkage modes on phthaloyl/triphenylamine hybrid compounds: Multi-functional AIE luminogens, non-doped emitters and organic hosts for highly efficient solution-processed delayed fluorescence OLEDs. Dyes Pigm. 2017, 137, 480–489. [Google Scholar] [CrossRef]
- Matsuoka, K.; Albrecht, K.; Nakayama, A.; Yamamoto, K.; Fujita, K. Highly Efficient Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes with Fully Solution-Processed Organic Multilayered Architecture: Impact of Terminal Substitution on Carbazole-Benzophenone Dendrimer and Interfacial Engineering. ACS Appl. Mater. Interfaces 2018, 10, 33343–33352. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, S.; Zhu, Y.; Wang, Y.; Zhan, H.; Cheng, Y. Thermally Activated Delayed Fluorescence Conjugated Polymers with Backbone-Donor/Pendant-Acceptor Architecture for Nondoped OLEDs with High External Quantum Efficiency and Low Roll-Off. Adv. Funct. Mater. 2018, 28, 1706916. [Google Scholar] [CrossRef]
- Wu, L.; Wang, K.; Wang, C.; Fan, X.C.; Shi, Y.Z.; Zhang, X.; Zhang, S.L.; Ye, J.; Zheng, C.J.; Li, Y.Q.; et al. Using fluorene to lock electronically active moieties in thermally activated delayed fluorescence emitters for high-performance non-doped organic light-emitting diodes with suppressed roll-off. Chem. Sci. 2020, 12, 1495–1502. [Google Scholar] [CrossRef]
- Zou, S.N.; Peng, C.C.; Yang, S.Y.; Qu, Y.K.; Yu, Y.J.; Chen, X.; Jiang, Z.Q.; Liao, L.S. Fully Bridged Triphenylamine Derivatives as Color-Tunable Thermally Activated Delayed Fluorescence Emitters. Org. Lett. 2021, 23, 958–962. [Google Scholar] [CrossRef]
- Huang, F.; Wang, K.; Shi, Y.Z.; Fan, X.C.; Zhang, X.; Yu, J.; Lee, C.S.; Zhang, X.H. Approaching Efficient and Narrow RGB Electroluminescence from D-A-Type TADF Emitters Containing an Identical Multiple Resonance Backbone as the Acceptor. ACS Appl. Mater. Interfaces 2021, 13, 36089–36097. [Google Scholar] [CrossRef]
- Fan, X.C.; Wang, K.; Shi, Y.Z.; Chen, J.X.; Huang, F.; Wang, H.; Hu, Y.N.; Tsuchiya, Y.; Ou, X.M.; Yu, J.; et al. Managing Intersegmental Charge-Transfer and Multiple Resonance Alignments of D-A Typed TADF Emitters for Red OLEDs with Improved Efficiency and Color Purity. Adv. Opt. Mater. 2021, 10, 2101789. [Google Scholar] [CrossRef]
- Huang, J.; Nie, H.; Zeng, J.; Zhuang, Z.; Gan, S.; Cai, Y.; Guo, J.; Su, S.J.; Zhao, Z.; Tang, B.Z. Highly Efficient Nondoped OLEDs with Negligible Efficiency Roll-Off Fabricated from Aggregation-Induced Delayed Fluorescence Luminogens. Angew. Chem. Int. Ed. 2017, 56, 12971–12976. [Google Scholar] [CrossRef]
- Wu, X.; Zeng, J.; Peng, X.; Liu, H.; Tang, B.Z.; Zhao, Z. Robust sky-blue aggregation-induced delayed fluorescence materials for high-performance top-emitting OLEDs and single emissive layer white OLEDs. Chem. Eng. J. 2023, 451, 138919. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Y.; Tang, B.Z.; Zhao, Z. All-fluorescence white organic light-emitting diodes with record-beating power efficiencies over 130 lm W−1 and small roll-offs. Nat. Commun. 2022, 13, 5154. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Auffray, M.; Zhang, D.; Zhang, Y.; Nagata, R.; Lin, Z.; Tang, X.; Chan, C.-Y.; Lee, Y.-T.; Huang, T.; et al. Enhancing spin-orbital coupling in deep-blue/blue TADF emitters by minimizing the distance from the heteroatoms in donors to acceptors. Chem. Eng. J. 2021, 420, 127591. [Google Scholar] [CrossRef]
- Rúnarsson, Ö.V.; Artacho, J.; Wärnmark, K. The 125th Anniversary of the Tröger’s Base Molecule: Synthesis and Applications of Tröger’s Base Analogues. Eur. J. Org. Chem. 2012, 2012, 7015–7041. [Google Scholar] [CrossRef]
- Neogi, I.; Jhulki, S.; Ghosh, A.; Chow, T.J.; Moorthy, J.N. Amorphous host materials based on Troger’s base scaffold for application in phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 3298–3305. [Google Scholar] [CrossRef] [PubMed]
- Kiehne, U.; Bruhn, T.; Schnakenburg, G.; Frohlich, R.; Bringmann, G.; Lutzen, A. Synthesis, resolution, and absolute configuration of difunctionalized Troger’s base derivatives. Chemistry 2008, 14, 4246–4255. [Google Scholar] [CrossRef]
- Didier, D.; Tylleman, B.; Lambert, N.; Vande Velde, C.M.L.; Blockhuys, F.; Collas, A.; Sergeyev, S. Functionalized analogues of Tröger’s base: Scope and limitations of a general synthetic procedure and facile, predictable method for the separation of enantiomers. Tetrahedron 2008, 64, 6252–6262. [Google Scholar] [CrossRef]
- Wada, Y.; Nakagawa, H.; Matsumoto, S.; Wakisaka, Y.; Kaji, H. Organic light emitters exhibiting very fast reverse intersystem crossing. Nat. Photonics 2020, 14, 643–649. [Google Scholar] [CrossRef]
- Chen, X.-L.; Tao, X.-D.; Wei, Z.; Meng, L.; Lin, F.-L.; Zhang, D.-H.; Jing, Y.-Y.; Lu, C.-Z. Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2021, 13, 46909–46918. [Google Scholar] [CrossRef]
- Gao, H.; Shen, S.; Qin, Y.; Liu, G.; Gao, T.; Dong, X.; Pang, Z.; Xie, X.; Wang, P.; Wang, Y. Ultrapure Blue Thermally Activated Delayed Fluorescence (TADF) Emitters Based on Rigid Sulfur/Oxygen-Bridged Triarylboron Acceptor: MR TADF and D-A TADF. J. Phys. Chem. Lett. 2022, 13, 7561–7567. [Google Scholar] [CrossRef]
- Liu, B.; Li, J.; Liu, D.; Mei, Y.; Lan, Y.; Song, K.; Li, Y.; Wang, J. Electron-withdrawing bulky group substituted carbazoles for blue TADF emitters: Simultaneous improvement of blue color purity and RISC rate constants. Dyes Pigm. 2022, 203, 110329. [Google Scholar] [CrossRef]
- Lee, Y.H.; Park, S.; Oh, J.; Shin, J.W.; Jung, J.; Yoo, S.; Lee, M.H. Rigidity-Induced Delayed Fluorescence by Ortho Donor-Appended Triarylboron Compounds: Record-High Efficiency in Pure Blue Fluorescent Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2017, 9, 24035–24042. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Li, J.; Chen, X.; Li, A.; Guo, K.; Chen, F.; Zhao, B.; Chen, Z.; Wang, H. Molecular Engineering of Push-Pull Diphenylsulfone Derivatives towards Aggregation-Induced Narrowband Deep Blue Thermally Activated Delayed Fluorescence (TADF) Emitters. Chemistry 2022, 28, e202202434. [Google Scholar] [CrossRef]
- Yoo, J.-Y.; Choi, Y.J.; Kim, K.W.; Ha, T.H.; Lee, C.W. Improved device efficiency and lifetime of green thermally activated delayed fluorescence materials with multiple donors and cyano substitution. Dyes Pigm. 2023, 214, 111200. [Google Scholar] [CrossRef]
Compound | λPL a [nm] | ΦPL b [%] | ΦPF/ΦDF c [%] | τPF/τDF d [ns/μs] | ES1/ET1/ΔEST e [eV] | /kISCf [107s−1] | kRISC g [105s−1] | CIE1931 [x,y] |
---|---|---|---|---|---|---|---|---|
TB-BP-DMAC | 517 | 31.5 | 21.2/10.3 | 12.1/2.55 | 2.81/2.68/0.128 | 1.75/3.81/2.69 | 5.83 | (0.30, 0.49) |
TB-DMAC | 467 | 50.4 | 36.1/14.3 | 11.6/2.28 | 3.12/2.96/0.158 | 3.11/3.06/2.43 | 6.13 | (0.18, 0.21) |
Device | Doping Concentration | λEL a [nm] | Von b [V] | Lmax c [cd/m2] | EQEmax d [%] | CEmax e [cd/A] | PEmax f [lm/W] | CIE1931 g [x,y] |
---|---|---|---|---|---|---|---|---|
TB-DMAC | 10% | 447 | 3.2 | 806 | 5.4 | 6.6 | 6.6 | (0.17, 0.13) |
20% | 449 | 2.9 | 1684 | 6.1 | 9.1 | 9.9 | (0.17, 0.15) | |
30% | 452 | 3.0 | 1474 | 6.0 | 9.0 | 9.5 | (0.17, 0.16) | |
100% (non-doped) | 453 | 3.1 | 552 | 5.7 | 10.4 | 11.2 | (0.18, 0.19) | |
TB-BP-DMAC | 20% | 508 | 5.3 | 3524 | 3.9 | 11.0 | 6.9 | (0.28, 0.51) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.-L.; Lv, X.; Meng, L.-Y.; Chen, X.-L.; Lu, C.-Z. Tröger’s Base-Derived Thermally Activated Delayed Fluorescence Dopant for Efficient Deep-Blue Organic Light-Emitting Diodes. Molecules 2023, 28, 4832. https://doi.org/10.3390/molecules28124832
Wu Z-L, Lv X, Meng L-Y, Chen X-L, Lu C-Z. Tröger’s Base-Derived Thermally Activated Delayed Fluorescence Dopant for Efficient Deep-Blue Organic Light-Emitting Diodes. Molecules. 2023; 28(12):4832. https://doi.org/10.3390/molecules28124832
Chicago/Turabian StyleWu, Ze-Ling, Xin Lv, Ling-Yi Meng, Xu-Lin Chen, and Can-Zhong Lu. 2023. "Tröger’s Base-Derived Thermally Activated Delayed Fluorescence Dopant for Efficient Deep-Blue Organic Light-Emitting Diodes" Molecules 28, no. 12: 4832. https://doi.org/10.3390/molecules28124832
APA StyleWu, Z. -L., Lv, X., Meng, L. -Y., Chen, X. -L., & Lu, C. -Z. (2023). Tröger’s Base-Derived Thermally Activated Delayed Fluorescence Dopant for Efficient Deep-Blue Organic Light-Emitting Diodes. Molecules, 28(12), 4832. https://doi.org/10.3390/molecules28124832