A Low-Cost Colorimetric Assay for the Analytical Determination of Copper Ions with Consumer Electronic Imaging Devices in Natural Water Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization Parameters
2.1.1. Effect of Reagent Series
2.1.2. Effect of Plate Volume
2.1.3. Effect of DDTC Concentration
2.1.4. Effect of Reaction Time
2.1.5. Effect of Photo Capture Apparatus
2.1.6. pH Effect
2.1.7. Effect of Ionic Strength
2.2. Method Validation
2.2.1. Linearity, Precision, and Limits of Detection (LOD) and Quantification (LOQ)
2.2.2. Interference Study Selectivity
2.3. Real Sample Applicability
3. Materials and Methods
3.1. Reagents and Solutions
3.2. Apparatus
3.3. Experimental Process
3.4. Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Park, J.-S.; Voyakin, D.; Kurbanov, B. Bronze-to-brass transition in the medieval Bukhara oasis. Archaeol. Anthropol. Sci. 2021, 13, 32. [Google Scholar] [CrossRef]
- D’Antonio, L.; Fabbricino, M.; Panico, A. Monitoring copper release in drinking water distribution systems. Water Sci. Technol. 2008, 57, 1111–1115. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y. An evaluation of microbial and chemical contamination sources related to the deterioration of tap water quality in the household water supply system. Int. J. Environ. Res. Public Health 2013, 10, 4143–4160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zietz, B.P.; Dassel de Vergara, J.; Dunkelberg, H. Copper concentrations in tap water and possible effects on infant’s health—Results of a study in Lower Saxony, Germany. Environ. Res. 2003, 92, 129–138. [Google Scholar] [CrossRef]
- Sörme, L.; Lagerkvist, R. Sources of heavy metals in urban wastewater in Stockholm. Sci. Total Environ. 2002, 298, 131–145. [Google Scholar] [CrossRef]
- Klevay, L.M. Copper. In Encyclopedia of Dietary Supplements, 2nd ed.; Coates, P.M., Betz, J.M., Blackman, M.R., Eds.; Informa Healthcare: London, UK; New York, NY, USA, 2010; pp. 604–611. [Google Scholar]
- Zhao, D.; Huang, Y.; Wang, B.; Chen, H.; Pan, W.; Yang, M.; Xia, Z.; Zhang, R.; Yuan, C. Dietary intake levels of iron, copper, zinc, and manganese in relation to cognitive function: A cross-sectional study. Nutrients 2023, 15, 704. [Google Scholar] [CrossRef]
- Ala, A.; Walker, A.P.; Ashkan, K.; Dooley, J.S.; Schilsky, M.L. Wilson’s disease. Lancet 2007, 369, 397–408. [Google Scholar] [CrossRef]
- Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261. [Google Scholar] [CrossRef]
- Chen, L.; Min, J.; Wang, F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022, 7, 378. [Google Scholar] [CrossRef]
- Thongkam, T.; Apilux, A.; Tusai, T.; Parnklang, T.; Kladsomboon, S. Thy-AuNP-AgNP hybrid systems for colorimetric determination of Copper (II) ions using UV-Vis spectroscopy and smartphone-based detection. Nanomaterials 2022, 12, 1449. [Google Scholar] [CrossRef]
- Böck, F.C.; Helfer, G.A.; da Costa, A.B.; Dessuy, M.B.; Ferrão, M.F. Low cost method for copper determination in sugarcane spirits using Photometrix UVC® embedded in smartphone. Food Chem. 2022, 367, 130669. [Google Scholar] [CrossRef] [PubMed]
- Giokas, D.L.; Paleologos, E.K.; Veltsistas, P.G.; Karayannis, M.I. Micellar enhanced analytical application of Bismuthiol-II for the spectrophotometric determination of trace copper in nutritional matrices. Microchim. Acta 2002, 140, 81–86. [Google Scholar] [CrossRef]
- Sahu, S.; Sikdar, Y.; Bag, R.; Drew, M.G.B.; Cerón-Carrasco, J.P.; Goswami, S. A Quinoxaline−Naphthaldehyde conjugate for colorimetric determination of copper ion. Molecules 2022, 27, 2908. [Google Scholar] [CrossRef]
- Anthemidis, A.N.; Zachariadis, G.A.; Stratis, J.A. On-line preconcentration and determination of copper, lead and chromium(VI) using unloaded polyurethane foam packed column by flame atomic absorption spectrometry in natural waters and biological samples. Talanta 2002, 58, 831–840. [Google Scholar] [CrossRef]
- Silveira, J.R.K.; Brudi, L.C.; Waechter, S.R.; Mello, P.A.; Costa, A.B.; Duarte, F.A. Copper determination in beer by flame atomic absorption spectrometry after extraction and preconcentration by dispersive liquid–liquid microextraction. Microchem. J. 2023, 184, 108181. [Google Scholar] [CrossRef]
- Manousi, N.; Kabir, A.; Furton, K.G.; Zachariadis, G.A.; Anthemidis, A. Automated solid phase extraction of Cd(II), Co(II), Cu(II) and Pb(II) coupled with flame atomic absorption spectrometry utilizing a new sol-gel functionalized silica sorbent. Separations 2021, 8, 100. [Google Scholar] [CrossRef]
- Yilmaz, E.; Soylak, M. Development a novel supramolecular solvent microextraction procedure for copper in environmental samples and its determination by microsampling flame atomic absorption spectrometry. Talanta 2014, 126, 191–195. [Google Scholar] [CrossRef]
- Han, Q.; Yang, X.; Huo, Y.; Lu, J.; Liu, Y. Determination of ultra-trace amounts of copper in environmental water samples by dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry. Separations 2023, 10, 93. [Google Scholar] [CrossRef]
- Burylin, M.Y.; Kopeyko, E.S.; Bauer, V.A. Determination of Cu and Mn in seawater by high resolution continuum source graphite furnace atomic absorption spectrometry. Anal. Lett. 2022, 55, 1663–1671. [Google Scholar] [CrossRef]
- Manousi, N.; Kabir, A.; Furton, K.G.; Zachariadis, G.A.; Anthemidis, A. multi-element analysis based on an automated on-line microcolumn separation/preconcentration system using a novel sol-gel thiocyanatopropyl-functionalized silica sorbent prior to ICP-AES for environmental water samples. Molecules 2021, 26, 4461. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Manousi, N.; Mourtzinos, I.; Zachariadis, G.A. Multielemental inductively coupled plasma–optical emission spectrometric (ICP-OES) method for the determination of nutrient and toxic elements in wild mushrooms coupled to unsupervised and supervised chemometric tools for their classification by species. Anal. Lett. 2022, 55, 2108–2123. [Google Scholar] [CrossRef]
- Granado-Castro, M.D.; Díaz-de-Alba, M.; Chinchilla-Real, I.; Galindo-Riaño, M.D.; García-Vargas, M.; Casanueva-Marenco, M.J. Coupling liquid membrane and flow-injection technique as an analytical strategy for copper analysis in saline water. Talanta 2019, 192, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Lu, Z.; Su, T.; Feng, Y.; Zhou, C.; Hong, P.; Sun, S.; Li, C. High sensitivity detection of copper ions in oysters based on the fluorescence property of cadmium selenide quantum dots. Chemosensors 2019, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Sayin, S. Synthesis of new quinoline-conjugated calixarene as a fluorescent sensor for selective determination of Cu2+ ion. J. Fluoresc. 2021, 31, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Mahnashi, M.H.; Mahmoud, A.M.; Alkahtani, S.A.; Ali, R.; El-Wekil, M.M. A novel imidazole derived colorimetric and fluorometric chemosensor for bifunctional detection of copper (II) and sulphide ions in environmental water samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117846. [Google Scholar] [CrossRef]
- Zong, W.; Cao, S.; Xu, Q.; Liu, R. The use of outer filter effects for Cu2+ quantitation: A unique example for monitoring nonfluorescent molecule with fluorescence. Luminescence 2012, 27, 292–296. [Google Scholar] [CrossRef]
- Cvek, B.; Milacic, V.; Taraba, J.; Ping, D.Q. Ni(II), Cu(II), and Zn(II) diethyldithiocarbamate complexes show various activities against the proteasome in breast cancer cells. J. Med. Chem. 2008, 51, 6256–6258. [Google Scholar] [CrossRef] [Green Version]
- Ly, N.H.; Nguyen, T.D.; Zoh, K.-D.; Joo, S.-W. Interaction between diethyldithiocarbamate and Cu(II) on gold in non-cyanide wastewater. Sensors 2017, 17, 2628. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Fu, Y.; Huang, T.; Liu, Y.; Wu, M.; Yuan, Y.; Li, S.; Li, C. Copper ion attenuated the antiproliferative activity of di-2-pyridylhydrazone dithiocarbamate derivative; However, there was a lack of correlation between ROS generation and antiproliferative activity. Molecules 2016, 21, 1088. [Google Scholar] [CrossRef] [Green Version]
- Sant’Ana, O.D.; Jesuino, L.S.; Cassella, R.J.; Carvalho, M.S.; Santelli, R.E. Solid phase extraction of Cu(II) as diethyldithiocarbamate (DDTC) complex by polyurethane foam. J. Braz. Chem. Soc. 2003, 14, 728–733. [Google Scholar] [CrossRef]
- Li, L.; Xu, K.; Huang, Z.; Xu, X.; Iqbal, J.; Zhao, L.; Du, Y. Rapid determination of trace Cu2+ by an in-syringe membrane SPE and membrane solid-phase spectral technique. Anal. Methods 2021, 13, 4691. [Google Scholar] [CrossRef] [PubMed]
- Kappi, F.A.; Papadopoulos, G.A.; Tsogas, G.Z.; Giokas, D.L. Low-cost colorimetric assay of biothiols based on the photochemical reduction of silver halides and consumer electronic imaging devices. Talanta 2017, 172, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Bizirtsakis, P.A.; Tarara, M.; Tsiasioti, A.; Tzanavaras, P.D.; Tsogas, G.Z. Development of a paper-based analytical method for the selective colorimetric determination of bismuth in water samples. Chemosensors 2022, 10, 265. [Google Scholar] [CrossRef]
- Tarara, M.; Tzanavaras, P.D.; Tsogas, G.Z. Development of a paper-based analytical method for the colorimetric determination of calcium in saliva samples. Sensors 2023, 23, 198. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; Tong, P.; Iqbal, J.; Zhang, X.; Wang, X.; Du, Y. Determination of trace analytes based on diffuse reflectance spectroscopic techniques: Development of a multichannel membrane filtration-enrichment device to improve repeatability. RSC Adv. 2014, 4, 52123–52129. [Google Scholar] [CrossRef]
- Hogarth, G. Transition Metal Dithiocarbamates: 1978–2003. Prog. Inorg. Chem. 2005, 53, 383–411. [Google Scholar]
- Zarei, A.R.; Mardi, K. A green approach for photometric determination of copper β-resorcylate in double base solid propellants. Chem. Methodol. 2021, 5, 513–521. [Google Scholar]
- European Union. Directive (Eu) 2020/2184 of the European Parliament and of the Council, on the quality of water intended for human consumption. Off. J. Eur. Union 2020, 435, 36. [Google Scholar]
Interfering Cations | Concentration (mg L−1) | Interfering Anions | Concentration (mg L−1) |
---|---|---|---|
Na+ | 50 | NO3− | 50 |
Ca2+ | 100 | HCO3− | 500 |
Mg2+ | 100 | SO42− | 25 |
K+ | 25 | Cl− | 100 |
Samples | Spiked (μmol L−1) | Found (μmol L−1) | % Recovery (±RSD, n = 5) |
---|---|---|---|
Bottled water 1 | 10 30 | 10.1 28.6 | 101.5 ± 0.3 95.2 ± 1.5 |
Bottled water 2 | 10 30 | 10.8 29.1 | 107.6 ± 6.3 96.9 ± 3.5 |
Bottled water 3 | 10 30 | 10.3 29.1 | 102.8 ± 6.5 96.9 ± 3.2 |
Bottled water 4 | 10 30 | 8.9 27.0 | 89.0 ± 5.0 89.9 ± 5.8 |
River water 1 | 10 30 | 11.0 28.7 | 109.6 ± 7.1 95.6 ± 4.6 |
River water 2 | 10 30 | 9.9 29.4 | 98.8 ± 8.4 97.8 ± 5.0 |
Tap water | 10 30 | 9.2 28.1 | 92.3 ± 4.7 93.6 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkouliamtzi, A.G.; Tsaftari, V.C.; Tarara, M.; Tsogas, G.Z. A Low-Cost Colorimetric Assay for the Analytical Determination of Copper Ions with Consumer Electronic Imaging Devices in Natural Water Samples. Molecules 2023, 28, 4831. https://doi.org/10.3390/molecules28124831
Gkouliamtzi AG, Tsaftari VC, Tarara M, Tsogas GZ. A Low-Cost Colorimetric Assay for the Analytical Determination of Copper Ions with Consumer Electronic Imaging Devices in Natural Water Samples. Molecules. 2023; 28(12):4831. https://doi.org/10.3390/molecules28124831
Chicago/Turabian StyleGkouliamtzi, Argyro G., Vasiliki C. Tsaftari, Maria Tarara, and George Z. Tsogas. 2023. "A Low-Cost Colorimetric Assay for the Analytical Determination of Copper Ions with Consumer Electronic Imaging Devices in Natural Water Samples" Molecules 28, no. 12: 4831. https://doi.org/10.3390/molecules28124831
APA StyleGkouliamtzi, A. G., Tsaftari, V. C., Tarara, M., & Tsogas, G. Z. (2023). A Low-Cost Colorimetric Assay for the Analytical Determination of Copper Ions with Consumer Electronic Imaging Devices in Natural Water Samples. Molecules, 28(12), 4831. https://doi.org/10.3390/molecules28124831