Binaphthyl-Based Chiral Macrocyclic Hosts for the Selective Recognition of Iodide Anions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Considerations
3.2. Typical Procedure for the Synthesis of RR-1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ahad, F.; Ganie, S.A. Iodine, iodine metabolism and iodine deficiency disorders revisited. Indian J. Endocrinol. Metab. 2010, 14, 13–17. [Google Scholar] [PubMed]
- Chung, H.R. Iodine and thyroid function. Ann. Pediatr. Endocrinol. Metab. 2014, 19, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Dai, G.; Levy, O.; Carrasco, N. Cloning and characterization of the thyroid iodide transporter. Nature 1996, 379, 458–460. [Google Scholar] [CrossRef]
- Di Lemma, F.G.; Colle, J.Y.; Beneš, O.; Konings, R.J.M. A separate effect study of the influence of metallic fission products on CsI radioactive release from nuclear fuel. J. Nucl. Mater. 2015, 465, 499–508. [Google Scholar] [CrossRef]
- Gloe, K. Macrocyclic Chemistry: Current Trends and Future Perspectives; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Han, Y.; Meng, Z.; Ma, Y.-X.; Chen, C.-F. Iptycene-derived crown ether hosts for molecular recognition and self-assembly. Acc. Chem. Res. 2014, 47, 2026–2040. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Li, C. Biphen[n]arenes: Modular Synthesis, Customizable Cavity Sizes, and Diverse Skeletons. Acc. Chem. Res. 2022, 55, 916–929. [Google Scholar] [CrossRef]
- Zeng, F.; Cheng, L.; Ou, G.-C.; Tang, L.-L.; Ding, M.-H. Pyromellitic Diimide-Extended Pillar[6]arene: Synthesis, Sturcture, and Its Complexation with Polycyclic Aromatic Hydrocarbons. J. Org. Chem. 2022, 87, 3863–3867. [Google Scholar] [CrossRef]
- Ding, M.-H.; Liao, J.; Tang, L.-L.; Ou, G.-C.; Zeng, F. High-yield synthesis of a novel water-soluble macrocycle for selective recognition of naphthalene. Chin. Chem. Lett. 2021, 32, 1665–1668. [Google Scholar] [CrossRef]
- Zeng, F.; Cheng, L.; Zhang, W.-J.; Tang, L.-L.; Wang, X.-F. Phenanthrene[2]arene: Synthesis and application as nonporous adaptive crystals in the separation of benzene from cyclohexane. Org. Chem. Front. 2022, 9, 3307–3311. [Google Scholar] [CrossRef]
- Zeng, F.; Xiao, X.-S.; Gong, S.-F.; Yuan, L.; Tang, L.-L. An electron-deficient supramolecular macrocyclic host for the selective separation of aromatics and cyclic aliphatics. Org. Chem. Front. 2022, 9, 4829–4833. [Google Scholar] [CrossRef]
- Gale, P.A.; Sessler, J.L.; Král, V.; Lynch, V. Calix[4]pyrroles: Old Yet New Anion-Bing Agents. J. Am. Chem. Soc. 1996, 118, 5140–5141. [Google Scholar] [CrossRef]
- Kim, S.K.; Sessler, J.L. Calix[4]pyrrole-Based Ion Pair Receptors. Acc. Chem. Res. 2014, 47, 2525–2536. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Sessler, J.L. Calix[4]pyrroles: Versatile molecular containers with ion transport, recognition, and molecular switching functions. Chem. Soc. Rev. 2015, 44, 532–546. [Google Scholar] [CrossRef]
- Farnham, W.B.; Roe, D.C.; Dixon, D.A.; Calabrese, J.C.; Harlow, R.L. Fluorinated macrocyclic ethers as fluoride ion hosts. Novel structures and dynamic properties. J. Am. Chem. Soc. 1990, 112, 7707–7718. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, W.; Chen, C.-H.; Flood, A.H. Chloride capture using a C-H hydrogen-bonding cage. Science 2019, 365, 159–161. [Google Scholar]
- Hua, Y.; Flood, A.H. Click chemistry generates privileged CH hydrogen-bonding triazoles: The latest addition to anion supramolecular chemistry. Chem. Soc. Rev. 2010, 39, 1262–1271. [Google Scholar] [CrossRef]
- McDonald, K.P.; Hua, Y.; Lee, S.; Flood, A.H. Shape persistence delivers lock-and-key chloride binding in triazolophanes. Chem. Commun. 2012, 48, 5065–5075. [Google Scholar] [CrossRef]
- Yawer, M.A.; Havel, V.; Sindelar, V.A. Bambusuril Macrocycle that Binds Anions in Water with High Affinity and Selectivity. Angew. Chem. Int. Ed. 2015, 54, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Svec, J.; Necas, M.; Sindelar, V. Bambus[6]uril. Angew. Chem. Int. Ed. 2010, 49, 2378–2381. [Google Scholar] [CrossRef] [PubMed]
- Havel, V.; Sindelar, V.; Necas, M.; Kaifer, A.E. Water-mediated inclusion of benzoates and tosylates inside the bambusuril macrocycle. Chem. Commun. 2014, 50, 1372–1374. [Google Scholar] [CrossRef] [PubMed]
- Řezanka, M.; Langton, M.J.; Beer, P.D. Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle. Chem. Commun. 2015, 51, 4499–4502. [Google Scholar] [CrossRef]
- Langton, M.J.; Duckworth, L.C.; Beer, P.D. Nitrate anion templated assembly of a [2]rotaxane for selective nitrate recognition in aqueous solvent mixtures. Chem. Commun. 2013, 49, 8608–8610. [Google Scholar] [CrossRef] [Green Version]
- Mullen, K.M.; Beer, P.D. Sulfate anion templation of macrocycles, capsules, interpenetrated and interlocked structures. Chem. Soc. Rev. 2009, 38, 1701–1713. [Google Scholar] [CrossRef] [Green Version]
- Barendt, T.A.; Robinson, S.W.; Beer, P.D. Superior anion induced shuttling behaviour exhibited by a halogen bonding two station rotaxane. Chem. Sci. 2016, 7, 5171–5180. [Google Scholar] [CrossRef] [Green Version]
- Tuo, D.-H.; Ao, Y.-F.; Wang, Q.-Q.; Wang, D.-X. Naphthalene-pillared benzene triimide cage: An efficient receptor for polyhedral anions and a general tool for probing theoretically existing anion-πbinding motifs. CCS Chem. 2022, 4, 2806–2815. [Google Scholar] [CrossRef]
- Wang, D.X.; Wang, M.X. Exploring anion–π interactions and their applications in supramolecular chemistry. Acc. Chem. Res. 2020, 53, 1364–1380. [Google Scholar] [CrossRef] [PubMed]
- Tuo, D.-H.; Ao, Y.-F.; Wang, Q.-Q.; Wang, D.-X. Benzene triimide cage as a selective container of azide. Org. Lett. 2019, 21, 7158–7162. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Chen, F.; Zhao, T.; Li, A.; Xu, G.; Sessler, J.L.; He, Q. Selective Inclusion of Fluoride within the Cavity of a Two-Wall Biscalix[4]pyrrole. Org. Lett. 2020, 22, 4451–4455. [Google Scholar] [CrossRef]
- Kim, S.H.; Yeon, Y.; Lee, A.; Lynch, V.M.; He, Q.; Sessler, J.L.; Kim, S.K. Tetraamidoindoly calix[4]arene as a selective ion pair receptor. Org. Chem. Front. 2022, 9, 6888–6893. [Google Scholar] [CrossRef]
- Li, Y.; Pink, M.; Karty, J.A.; Flood, A.H. Dipole-Promoted and Size-Dependent Cooperativity between Pyridyl-Containing Triazolophanes and Halides Leads to Persistent Sandwich Complexes with Iodide. J. Am. Chem. Soc. 2008, 130, 17293–17295. [Google Scholar] [CrossRef]
- Mendy, J.S.; Saeed, M.A.; Fronczek, F.R.; Powell, D.R.; Hossain, M.A. Anion Recognition and Sensing by a New Macrocyclic Dinuclear Copper(II) Complex: A Selective Receptor for Iodide. Inorg. Chem. 2010, 49, 7223–7225. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.Y.; Singh, N.; Kim, M.J.; Jang, D.O. Chromogenic and Fluorescent Recognition of Iodide with a Benzimidazole-Based Tripodal Receptor. Org. Lett. 2011, 13, 3024–3027. [Google Scholar] [CrossRef]
- Zhu, S.S.; Staats, H.; Brandhorst, K.; Grunenberg, J.; Gruppi, F.; Dalcanale, E.; Luetzen, A.; Rissanen, K.; Schalley, C.A. Anion Binding to Resorcinarene-Based Cacitands: The Importance of C-H… Anion Interactions. Angew. Chem. Int. Ed. 2008, 47, 788–792. [Google Scholar] [CrossRef]
- Li, Y.; Flood, A.H. Pure C-H Hydrogen Binding of Chloride Ions: A Preorganized and Rigid Macrocyclic Receptor. Angew. Chem. Int. Ed. 2008, 47, 2649–2652. [Google Scholar] [CrossRef]
- Juwarker, H.; Lenhardt, J.M.; Pham, D.M.; Craig, S.L. 1,2,3-Triazole CH…Cl− Contacts Guide Anion Binding and Concomitant Folding in 1,4-Diaryl Triazole Oligomers. Angew. Chem. Int. Ed. 2008, 47, 3740–3743. [Google Scholar] [CrossRef]
- Berryman, O.B.; Sather, A.C.; Hay, B.P.; Meisner, J.S.; Johnson, D.W. Solution Phase Measurement of Both Weak σ and C−H···X− Hydrogen Bonding Interactions in Synthetic Anion Receptors. J. Am. Chem. Soc. 2008, 130, 10895–10897. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, G.; Chen, L.; Tong, L.; Lei, Y.; Shen, L.; Jiao, T.; Li, H. Selective Recognition of Chloride Anion in Water. Org. Lett. 2020, 22, 4878–4882. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fang, S.; Wu, G.; Lei, Y.; Chen, Q.; Wang, H.; Wu, Y.; Lin, C.; Hong, X.; Kim, S.K.; et al. Constraining Homo- and Heteroanion Dimers in Ultraclos Proximity within a Self-Assembled Hexacationic Cage. J. Am. Chem. Soc. 2020, 142, 20182–20190. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, C.; Fang, S.; Zhu, D.; Chen, Y.; Ge, C.; Tang, H.; Li, H. A Self-Assembled Cage Binding Iodide Anions over Other Halid Ions in Water. Angew. Chem. Int. Ed. 2022, 61, e202209078. [Google Scholar]
- Zhu, H.; Shi, B.; Chen, K.; Wei, P.; Xia, D.; Mondal, J.H.; Huang, F. Cyclo[4]carbazole, an Iodide Anion Macrocyclic Receptor. Org. Lett. 2016, 18, 5054–5057. [Google Scholar] [CrossRef]
- Bryantsev, V.S.; Hay, B.P. Are C−H Groups Significant Hydrogen Bonding Sites in Anion Receptors? Benzene Complexes with Cl−, NO3−, and ClO4−. J. Am. Chem. Soc. 2005, 127, 8282–8283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ao, Y.-F.; Wang, D.-X.; Wang, Q.Q. Triazine- and Binaphthol-Based Chiral Macrocycles and Cages: Synthesis, Structure, and Solid-State Assembly. J. Org. Chem. 2022, 87, 3491–3497. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Liang, F.; Wang, Y.; Xu, M.; Wang, X. A highly sensitive water-soluble system to sense glucose in aqueous solution. Org. Biomol. Chem. 2011, 9, 2938–2942. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-C.; Tan, Y.-Z.; Tang, L.-L.; Zeng, F. Binaphthyl-Based Chiral Macrocyclic Hosts for the Selective Recognition of Iodide Anions. Molecules 2023, 28, 4784. https://doi.org/10.3390/molecules28124784
Wang Z-C, Tan Y-Z, Tang L-L, Zeng F. Binaphthyl-Based Chiral Macrocyclic Hosts for the Selective Recognition of Iodide Anions. Molecules. 2023; 28(12):4784. https://doi.org/10.3390/molecules28124784
Chicago/Turabian StyleWang, Zong-Cheng, Ying-Zi Tan, Lin-Li Tang, and Fei Zeng. 2023. "Binaphthyl-Based Chiral Macrocyclic Hosts for the Selective Recognition of Iodide Anions" Molecules 28, no. 12: 4784. https://doi.org/10.3390/molecules28124784
APA StyleWang, Z. -C., Tan, Y. -Z., Tang, L. -L., & Zeng, F. (2023). Binaphthyl-Based Chiral Macrocyclic Hosts for the Selective Recognition of Iodide Anions. Molecules, 28(12), 4784. https://doi.org/10.3390/molecules28124784