Electron-Rich Triazine-Conjugated Microporous Polymers for the Removal of Dyes from Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of T-CMP and T-CMP-Me
2.2. Characterization of T-CMP and T-CMP-Me
3. Porosity Measurements and Gas Adsorption Studies
4. Dye Adsorption Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lee, J.; Kim, J.G.; Chang, J.Y. Fabrication of a conjugated microporous polymer membrane and its application for membrane catalysis. Sci. Rep. 2017, 7, 13568. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Almatrafi, E.; Tang, L.; Song, B.; Zhou, C.; Zeng, Y.; Zeng, G.; Liu, Z. Processable Conjugated Microporous Polymer Gels and Monoliths: Fundamentals and Versatile Applications. ACS Appl. Mater. Interfaces 2022, 14, 39701. [Google Scholar] [CrossRef]
- Lee, J.-S.M.; Wu, T.-H.; Alston, B.M.; Briggs, M.E.; Hasell, T.; Hu, C.-C.; Cooper, A.I. Porosity-engineered carbons for supercapacitive energy storage using conjugated microporous polymer precursors. J. Mater. Chem. A 2016, 4, 7665. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Wu, F.; Xie, A.; Wu, L.; Zhao, W.; Zhu, X.; Qi, X. Electrically conductive conjugate microporous polymers (CMPs) via confined polymerization of pyrrole for electromagnetic wave absorption. Chem. Eng. J. 2020, 398, 125591. [Google Scholar] [CrossRef]
- Haleem, A.; Shafiq, A.; Chen, S.-Q.; Nazar, M. A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023, 28, 1081. [Google Scholar] [CrossRef]
- Li, Q.; Fan, Z.-L.; Xue, D.-X.; Zhang, Y.-F.; Zhang, Z.-H.; Wang, Q.; Sun, H.-M.; Gao, Z.; Bai, J. A multi-dye@MOF composite boosts highly efficient photodegradation of an ultra-stubborn dye reactive blue 21 under visible-light irradiation. J. Mater. Chem. A 2018, 6, 2148. [Google Scholar] [CrossRef]
- Amin, K.; Ashraf, N.; Mao, L.; Faul, C.F.J.; Wei, Z. Conjugated microporous polymers for energy storage: Recent progress and challenges. Nano Energy 2021, 85, 105958. [Google Scholar] [CrossRef]
- Holst, J.R.; Trewin, A.; Cooper, A.I. Porous organic molecules. Nat. Chem. 2010, 2, 915. [Google Scholar] [CrossRef]
- Jiang, J.-X.; Laybourn, A.; Clowes, R.; Khimyak, Y.Z.; Bacsa, J.; Higgins, S.J.; Adams, D.J.; Cooper, A.I. High Surface Area Contorted Conjugated Microporous Polymers Based on Spiro-Bipropylenedioxythiophene. Macromolecules 2010, 43, 7577. [Google Scholar] [CrossRef]
- Lee, J.M.; Cooper, A.I. Advances in Conjugated Microporous Polymers. Chem. Rev. 2020, 120, 2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Z.; Zhang, D.S.; Chen, Q.; Bu, X.H. Microporous organic polymers for gas storage and separation applications. Phys. Chem. Chem. Phys. 2013, 15, 5430. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, Y.; Eginligil, M.; Wang, L.; Liu, J.; Huang, W. Two-dimensional conjugated microporous polymer films: Fabrication strategies and potential applications. Polym. Chem. 2021, 12, 807. [Google Scholar] [CrossRef]
- Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. Light-Harvesting Conjugated Microporous Polymers: Rapid and Highly Efficient Flow of Light Energy with a Porous Polyphenylene Framework as Antenna. J. Am. Chem. Soc. 2010, 132, 6742. [Google Scholar] [CrossRef]
- Sun, Q.; Aguila, B.; Song, Y.; Ma, S. Tailored Porous Organic Polymers for Task-Specific Water Purification. Acc. Chem. Res. 2020, 53, 812. [Google Scholar] [CrossRef]
- Tan, Z.; Su, H.; Guo, Y.; Liu, H.; Liao, B.; Amin, A.M.; Liu, Q. Ferrocene-Based Conjugated Microporous Polymers Derived from Yamamoto Coupling for Gas Storage and Dye Removal. Polymers 2020, 12, 719. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Sun, W.; Pan, W.; Xu, N. Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites. Chem. Eng. J. 2015, 274, 17. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Chen, L. Polyoxometalate built-in conjugated microporous polymers for visible-light heterogeneous photocatalysis. J. Mater. Chem. A 2017, 5, 13757. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, J.; Chen, J.; Kong, L.; Lu, J.; Ding, F.; Xiong, Y. Fe2(MoO4)3 as an Effective Photo-Fenton-like Catalyst for the Degradation of Anionic and Cationic Dyes in a Wide pH Range. Ind. Eng. Chem. Res. 2013, 52, 13333. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, C.-Y.; Zhao, H.-S.; Yin, S.-Y.; Wang, S.-J.; Zhang, J.-H.; Jiang, J.-J.; Pan, M.; Su, C.-Y. Record high cationic dye separation performance for water sanitation using a neutral coordination framework. J. Mater. Chem. A 2019, 7, 4751. [Google Scholar] [CrossRef]
- Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown, G.E. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environ. Sci. Technol. 2012, 46, 6900. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Hota, G. Iron oxide nanoparticle-immobilized PAN nanofibers: Synthesis and adsorption studies. RSC Adv. 2016, 6, 15402. [Google Scholar] [CrossRef]
- Jiang, J.X.; Su, F.; Trewin, A.; Wood, C.D.; Campbell, N.L.; Niu, H.; Dickinson, C.; Ganin, A.Y.; Rosseinsky, M.J.; Khimyak, Y.Z.; et al. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem. Int. Ed. 2007, 46, 8574. [Google Scholar] [CrossRef]
- Cheng, G.; Hasell, T.; Trewin, A.; Adams, D.J.; Cooper, A.I. Soluble conjugated microporous polymers. Angew. Chem. Int. Ed. 2012, 51, 12727. [Google Scholar] [CrossRef]
- Luo, L.; Wu, Z.; Wu, Z.; Liu, Y.; Huang, X.; Ling, R.; Ye, L.; Luo, X.; Wang, C. Role of Structure in the Ammonia Uptake of Porous Polyionic Liquids. ACS Sustain. Chem. Eng. 2022, 10, 4094. [Google Scholar] [CrossRef]
- Haleem, A.; Pan, J.-M.; Shah, A.; Hussain, H.; He, W. A systematic review on new advancement and assessment of emerging polymeric cryogels for environmental sustainability and energy production. Sep. Purif. Technol. 2023, 316, 123678. [Google Scholar] [CrossRef]
- Hu, G.; Wu, T.; Liu, Z.; Gao, S.; Hao, J. Application of Molecular Imprinting Technology Based on New Nanomaterials in Adsorption and Detection of Fluoroquinolones. Anal. Methods 2023, 15, 2467. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, M.; Ahmad, H.; Ajayan, P.; Pandey, P.K.; Calvert, B.M.; Zhang, X.; Chen, F.; Kim, S.J.; Kundu, S.; Gavvalapalli, N. Using molecular straps to engineer conjugated porous polymer growth, chemical doping, and conductivity. Chem. Sci. 2023, 14, 5510. [Google Scholar] [CrossRef] [PubMed]
- Segura, J.L.; Mancheno, M.J.; Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: Synthesis, properties and potential applications. Chem. Soc. Rev. 2016, 45, 5635. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.; Acharjya, A.; Ichangi, A.; Kochergin, Y.S.; Lyu, P.; Opanasenko, M.V.; Tarabek, J.; Vacek Chocholousova, J.; Vacek, J.; Schmidt, J.; et al. Tuning the Porosity and Photocatalytic Performance of Triazine-Based Graphdiyne Polymers through Polymorphism. ChemSusChem 2019, 12, 194. [Google Scholar] [CrossRef]
- Luo, D.; Li, M.; Ma, Q.; Wen, G.; Dou, H.; Ren, B.; Liu, Y.; Wang, X.; Shui, L.; Chen, Z. Porous organic polymers for Li-chemistry-based batteries: Functionalities and characterization studies. Chem. Soc. Rev. 2022, 51, 2917. [Google Scholar] [CrossRef]
- Zhou, Z.; Shinde, D.B.; Guo, D.; Cao, L.; Nuaimi, R.A.; Zhang, Y.; Enakonda, L.R.; Lai, Z. Flexible Ionic Conjugated Microporous Polymer Membranes for Fast and Selective Ion Transport. Adv. Funct. Mater. 2021, 32, 2108672. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, D.; Guo, J.; Yang, J.; Pu, Y.; Chen, J.-F. Synthesis of poly(9,9-dioctylfluorene) in a rotating packed bed with enhanced performance for polymer light-emitting diodes. Polym. Chem. 2022, 13, 3506. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, Y.; Zhang, C.; Du, J.; Wang, S.; Bai, Y.; Liang, Z.; Song, X. Post-cationic Modification of a Pyrimidine-Based Conjugated Microporous Polymer for Enhancing the Removal Performance of Anionic Dyes in Water. Chem. Eur. J. 2018, 24, 7480. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Huang, H.; Chen, L.; Chen, Y. N,N′-Bicarbazole: A Versatile Building Block toward the Construction of Conjugated Porous Polymers for CO2 Capture and Dyes Adsorption. Macromolecules 2017, 50, 4993. [Google Scholar] [CrossRef]
- Tantisriyanurak, S.; Duguid, H.N.; Peattie, L.; Dawson, R. Acid Functionalized Conjugated Microporous Polymers as a Reusable Catalyst for Biodiesel Production. ACS Appl. Poly. Mater. 2020, 2, 3908. [Google Scholar] [CrossRef]
- Zou, L.H.; Johansson, A.J.; Zuidema, E.; Bolm, C. Mechanistic insights into copper-catalyzed Sonogashira-Hagihara-type cross-coupling reactions: Sub-mol% catalyst loadings and ligand effects. Chem. Eur. J. 2013, 19, 8144. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, H.; Li, L.; Wang, R. Facile Synthesis and Tunable Porosities of Imidazolium-Based Ionic Polymers that Contain In Situ Formed Palladium Nanoparticles. ChemCatChem 2016, 8, 2234. [Google Scholar] [CrossRef]
- Soliman, A.B.; Haikal, R.R.; Hassan, Y.S.; Alkordi, M.H. The potential of a graphene-supported porous-organic polymer (POP) for CO2 electrocatalytic reduction. Chem. Commun. 2016, 52, 12032. [Google Scholar] [CrossRef]
- Alkordi, M.H.; Haikal, R.R.; Hassan, Y.S.; Emwas, A.-H.; Belmabkhout, Y. Poly-functional porous-organic polymers to access functionality—CO2 sorption energetic relationships. J. Mater. Chem. A 2015, 3, 22584. [Google Scholar] [CrossRef]
- Li, Q.; Xue, D.-X.; Zhang, Y.-F.; Zhang, Z.-H.; Gao, Z.; Bai, J. A dual-functional indium–organic framework towards organic pollutant decontamination via physically selective adsorption and chemical photodegradation. J. Mater. Chem. A 2017, 5, 14182. [Google Scholar] [CrossRef]
- Liu, Y. Is the Free Energy Change of Adsorption Correctly Calculated? J. Chem. Eng. Data 2009, 54, 1981. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451. [Google Scholar] [CrossRef]
- Wang, S.; Meng, X.; Luo, H.; Yao, L.; Song, X.; Liang, Z. Post-synthetic modification of conjugated microporous polymer with imidazolium for highly efficient anionic dyes removal from water. Sep. Purif. Technol. 2022, 284, 120245. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.-N.; Zhang, X.-L.; Bai, X.-H.; Liang, Z.-J.; Li, J.; Fan, X.-Y. Electron-Rich Triazine-Conjugated Microporous Polymers for the Removal of Dyes from Wastewater. Molecules 2023, 28, 4785. https://doi.org/10.3390/molecules28124785
Li B-N, Zhang X-L, Bai X-H, Liang Z-J, Li J, Fan X-Y. Electron-Rich Triazine-Conjugated Microporous Polymers for the Removal of Dyes from Wastewater. Molecules. 2023; 28(12):4785. https://doi.org/10.3390/molecules28124785
Chicago/Turabian StyleLi, Bao-Ning, Xing-Long Zhang, Xiao-Hui Bai, Zhen-Jie Liang, Jian Li, and Xiao-Yong Fan. 2023. "Electron-Rich Triazine-Conjugated Microporous Polymers for the Removal of Dyes from Wastewater" Molecules 28, no. 12: 4785. https://doi.org/10.3390/molecules28124785
APA StyleLi, B. -N., Zhang, X. -L., Bai, X. -H., Liang, Z. -J., Li, J., & Fan, X. -Y. (2023). Electron-Rich Triazine-Conjugated Microporous Polymers for the Removal of Dyes from Wastewater. Molecules, 28(12), 4785. https://doi.org/10.3390/molecules28124785