Antifeedant Potential of Geranylacetone and Nerylacetone and Their Epoxy-Derivatives against Myzus persicae (Sulz.)
Abstract
:1. Introduction
2. Results
2.1. Chemical Synthesis
2.2. Aphid Settling (Choice-Test)
2.3. Electronic Registration of Aphid Probing Behavior (No-Choice Test)
2.3.1. General Aspects of Aphid Probing Behavior
2.3.2. Aphid Probing Behavior Prior to the First Phloem Phase (Non-Phloem Tissues)
2.3.3. Aphid Probing Behavior during Phloem Phase (Phloem Tissues)
2.3.4. ‘Exploratory Cell Punctures’ in Non-Phloem Tissues
3. Discussion
4. Materials and Methods
4.1. Compounds and Reagents
4.2. Synthesis of Epoxyderivatives of Geranylacetone and Nerylacetone
4.3. General Procedures
4.4. Aphid and Plant Cultures
4.5. Aphid Settling (Choice-Test)
4.6. Electronic Registration of Aphid Probing Behavior (No-Choice Test)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Guerrieria, E.; Digilio, C. Aphid-plant interactions: A review. J. Plant Interact 2008, 3, 223–232. [Google Scholar] [CrossRef]
- Loxdale, H.D.; Edwards, O.; Tagu, D.; Vorburger, C. Population genetic issues: New insights using conventional molecular markers and genomics tools. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2017; pp. 50–80. [Google Scholar]
- Lenteren, J.; Drost, Y.; Roermund, H.; Posthuma-Doodeman, C. Aphelinid parasitoids as sustainable biological control agents in greenhouses. J. Appl. Entomol. 1997, 121, 473–485. [Google Scholar] [CrossRef]
- Cutler, G.C.; Ramanaidu, K.; Astatkie, T.; Isman, M.B. Green peach aphid, Myzus persicae (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin. Pest Manag. Sci. 2009, 65, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Al Antary, T.M.; Abdel-Wali, M.I. Integration of biological and chemical control of Myzus persicae (Sulzer) (Hemiptera: Aphididae) under greenhouse conditions. Egypt J. Biol. Pest Control 2016, 26, 533–537. [Google Scholar]
- Hlaoui, A.; Boukhris-Bouhachem, S.; Sepúlveda, D.A.; Correa, M.; Briones, L.M.; Souissi, R.; Figueroa, C.C. Spatial and temporal genetic diversity of the peach potato aphid Myzus persicae (Sulzer) in Tunisia. Insects 2019, 10, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackman, R.; Eastop, V. Taxonomic Issues. In Aphids as Crop Pests; van Emden, H., Harrington, R., Eds.; CABI: Wallingford, UK, 2007; pp. 1–29. [Google Scholar]
- Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 2014, 51, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, S.M.; Khan, Z.R.; Pickett, J.A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 2007, 52, 375–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO.Pesticides Use, Pesticides Trade and Pesticides Indicators – Global, Regional and Country Trends, 1990–2020. FAOSTAT Analytical Briefs, 46. 2022, Rome. Available online: https://www.fao.org/3/cc0918en/cc0918en.pdf (accessed on 13 November 2022).
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisc. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossa, A.H.; Mohafrash, S.M.M.; Chandrasekaran, N. Safety of natural insecticides: Toxic effects on experimental animals. Biomed. Res. Int. 2018, 2018, 4308054. [Google Scholar] [CrossRef] [Green Version]
- Schoonhoven, L.M. Biological aspects of antifeedants. Entomol. Exp. Appl. 1982, 31, 57–69. [Google Scholar] [CrossRef]
- Campos, E.V.R.; de Oliveira, J.L.; Pascoli, M.; de Lima, R.; Fraceto, L.F. Neem oil and crop protection: From now to the future. Front. Plant Sci. 2016, 7, 1494. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defence mechanisms. New Phytologist. 1994, 127, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, M. The potential of secondary metabolites in plant material as deterents against insect pests: A review. Afr. J. Pure Appl. Chem. 2010, 4, 243–246. [Google Scholar]
- Nawrot, J.; Harmatha, J. Phytochemical feeding deterrents for stored product insect pests. Phytochem. Rev. 2012, 11, 543–566. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 50, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Hassan, E.; Gökçe, A. Production and Consumption of Biopesticides. In Advances of Plant Biopesticides; Singh, D., Ed.; Springer India: New Delhi, India, 2014; pp. 361–379. [Google Scholar]
- Singh, R.P.; Saxena, R.C. Azadirachta Indica A Juss; Oxford & IBH Publishing Co. Pvt. Ltd: Delhi, India, 1999; p. 330.
- Kilani, M.S.; Morakchi, G.H.; Sifi, K. Azadirachtin-based insecticide: Overview, risk assessments, and future directions. Front. Agron. 2021, 3, 32. [Google Scholar]
- Pickett, J.A.; Wadhams, L.J.; Woodcock, C.M. Attempts to control aphid pests by integrated use of semiochemicals. Br. Crop Prot. Conf.-Pests Dis. 1994, 3, 1239–1246. [Google Scholar]
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- Isman, M.B. Bioinsecticides based on plant essential oils: A short overview. Z Nat. C J. Biosci. 2020, 75, 179–182. [Google Scholar] [CrossRef]
- Tortorici, S.; Cimino, C.; Ricupero, M.; Musumeci, T.; Biondi, A.; Siscaro, G.; Carbone, C.; Zappala, I. Nanostructured lipid carriers of essential oils as potential tools for the sustainable control of insect pest. Ind. Crops Prod. 2022, 181, 114766. [Google Scholar] [CrossRef]
- Sciortino, M.; Scurria, A.; Lino, C.; Pagliaro, M.; D’Agostino, F.; Tortorici, S.; Ricupero, M.; Biondi, A.; Zappala, L.; Ciriminna, R. Silica-microencapsulated orange oil for sustainable pest control. Adv. Sustain. Syst. 2021, 5, 2000280. [Google Scholar] [CrossRef]
- War, A.R.; Buhroo, A.A.; Hussain, B.; Ahmad, T.; Nair, R.M.; Sharma, H.C. Plant defense and insect adaptation with reference to secondary metabolites. In References Series in Phytochemistry; Merillon, J.M., Ramawat, K.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Verdeguer, M.; Sanchez-Moreiras, A.; Arantiti, F. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef] [PubMed]
- Pickett, J.A. Lower terpenoids as natural insect control agents. In Ecological Chemistry and Biochemistry of Plant Terpenoids; Harborne, J.B., Tomas-Barberan, F.A., Eds.; Clarendon Press: Oxford, UK, 1991; pp. 297–313. [Google Scholar]
- Harrewijn, P.; Oosten, A.M.; Piron, P.G.M. Natural Terpenoids as Messengers. A Multidisciplinary Study of Their Production, Biological Functions and Practical Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 1–424. [Google Scholar]
- Gabryś, B.; Dancewicz, K.; Halarewicz-Pacan, A.; Janusz, E. Effect of natural monoterpenes on the behavior of the peach potato aphid Myzus persicae (Sulz.). IOBC WPRS Bull. 2005, 28, 29–34. [Google Scholar]
- Halbert, S.E.; Corsisini, D.; Wiebe, M.; Vaughn, S.F. Plant-derived compounds and extracts potential as aphid repellents. Ann. Appl. Biol. 2008, 154, 303–307. [Google Scholar] [CrossRef]
- Asakawa, Y.; Noma, Y. Biotransformation of sesquiterpenoids. In Comprehensive Natural Products II Chemistry and Biology; Mander, L., Liu, H.W., Eds.; Elsevier: Oxford, UK, 2010; pp. 856–859. [Google Scholar]
- Bonikowski, R.; Świtakowska, P.; Sienkiewicz, M.; Zakłos-Szyda, M. Selected compounds structurally related to acyclic sesquiterpenoids and their antibacterial and cytotoxic activity. Molecules 2015, 20, 11272–11296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.M.; Sultana, T.; Ali, M.Y.; Rahman, M.M.; Al.-Reza, S.M.; Rahman, A. Chemical composition and antibacterial activity of the essential oli andvarious extracts from Cassia sophera L. against Bacillus sp. from soil. Arab. J. Chem. 2017, 10, 2132–2137. [Google Scholar] [CrossRef]
- Machova, M.; Bajer, T.; Silha, D.; Ventura, K.; Bajerova, P. Volatiles composition and antimicrobal activities of areca nut exctracts obtained by simultaneous distillation extraction and headspace solid phase microextraction. Molecules 2021, 7, 7422. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska, A.; Witkowska, P.; Bonikowski, R.; Kunicka, A. Synteza 3- oraz 4- pirydyloanalogów wybranych acyklicznych terpenów—właściwości sensoryczne i aktywność przeciwdrobnoustrojowa. Zesz. Nauk. PŁódz. 2009, 1058, 62–72. [Google Scholar]
- Lwande, W.; Ndakala, A.; Hassanali, S.; Moreka, L.; Nyaandat, E.; Ndungu, M.; Aamani, H.; Gitu, M.; Malonza, M.; Punyua, D. Gynandropsis gynandra essential oil and its constituents as tick (Rhipicephalus appendiculatus) repellents. Phytochemistry 1999, 50, 401–405. [Google Scholar] [CrossRef]
- Zhang, Q.; Schlyter, F.; Chen, G.; Wang, Y. Electrophysiological and behavioral responses of Ips subelongatus to semiochemicals from its hosts, non-hosts, and conspecifics in China. J. Chem. Ecol. 2007, 33, 391–404. [Google Scholar] [CrossRef]
- Ibrahim, N.; El-Hawary, S.; Mohammed, M.; Faraid, M.; Abdelwahed, N.; Refaat, E. Chemical composition, antimicrobial activity of the essential oil of the flowers of Paulownia tomentosa (Thunb.) Steud. growing in Egypt. J. Appl. Sci. Res. 2013, 9, 3228–3232. [Google Scholar]
- Sharma, P.; Singh, V.; Ali, M. Chemical composition and antimicrobial activity of fresh rhizome essential oil of Zingiber Officinale Roscoe. Pharmacogn. J. 2016, 8, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Paprocka, M.; Gliszczyńska, A.; Dancewicz, K.; Gabryś, B. Novel hydroxy- and epoxy-cis-jasmone and dihydrojasmone derivatives affect the foraging activity of the peach potato aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Molecules 2018, 23, 2362. [Google Scholar] [CrossRef] [PubMed]
- Salvador-Rectala, V.; Tjallingii, W.F. A new application of the electrical penetration graph (EPG) for acquiring and measuring electrical signals in phloem sieve elements. J. Vis. Exp. 2015, 101, e52826. [Google Scholar] [CrossRef] [Green Version]
- Gabryś, B.; Dancewicz, K.; Gliszczyńska, A.; Kordan, B.; Wawrzeńczyk, C. Systemic deterrence of aphid probing and feeding by β-damascone analogues. J. Pest Sci. 2015, 88, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Mayoral, A.; Tjallingii, W.F.; Castanera, E. Probing behavior of Diuraphis noxia on five cereal species with different hydroxamic acid levels. Entomol. Exp. Appl. 1996, 78, 341–348. [Google Scholar] [CrossRef]
- Wróblewska-Kurdyk, A.; Nowak, L.; Dancewicz, K.; Szumny, A.; Gabryś, B. In search of biopesticides: The effect of caraway Carum carvi essential oil and its major constituents on peach potato aphid Myzus persicae probing behavior. Acta Biol. 2015, 22, 51–62. [Google Scholar]
- Kordan, B.; Wróblewska-Kurdyk, A.; Bocianowska, J.; Stec, K.; Jankowski, K.; Gabryś, B. Variation in susceptibility of rapeseed cultivars to the peach potato aphid. J. Pest Sci. 2021, 94, 435–449. [Google Scholar] [CrossRef]
- Kordan, B.; Dancewicz, K.; Wróblewska, A.; Gabryś, B. Intraspecific variation in alkaloid profile of four lupine species with implications for the pea aphid probing behavior. Phytochem. Lett. 2012, 5, 71–77. [Google Scholar] [CrossRef]
- He, W.; Li, J.; Liu, S. Differential profiles of direct and indirect modification of vector feeding behavior by a plant virus. Sci. Rep. 2015, 5, 7682. [Google Scholar] [CrossRef] [Green Version]
- Dancewicz, K.; Sznajder, K.; Załuski, D.; Kordan, B.; Gabryś, B. Behavioral sensitivity of Myzus persicae to volatile isporenoids in plant tissues. Entomol. Exp. Appl. 2016, 160, 229–240. [Google Scholar] [CrossRef]
- Escudero-Martinez, C.; Leybourne, D.J.; Bos, J.I.B. Plant resistance in different cell layers affects aphid probing and feeding behavior during non-host and poor-host interactions. Bull. Entomol. Res. 2021, 111, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Abualfia, R.; Samara, R. Antifeedants Impact of Plant Essential Oil on Green Peach Aphid on Potato Crops. J. Ecol. Eng. 2022, 23, 274–285. [Google Scholar]
- Philippi, J.; Schliephake, E.; Jurgens, H.U.; Jansen, G.; Ordon, F. Feeding behavior of aphids on narrow-leafed lupin (Lupinus angustifolius) genotypes varying in the content of quinolizidine alkaloids. Entomol. Exp. Appl. 2015, 156, 37–51. [Google Scholar] [CrossRef]
- van Helden, M.; Tjallingii, W.F. Tissue localization of lettuce reststance to the aphid Nasonovia ribisnigri using electrical penetration graphs. Entomol. Exp. Appl. 1993, 68, 269–278. [Google Scholar] [CrossRef]
- Phuong, T.; Wróblewska-Kurdyk, A.; Dancewicz, K.; Gabryś, B. Selective acceptance of Brassicaceous plants by the peach potato aphid Myzus persicae: A case study of Aurinia saxatilis. Acta Biol. 2015, 846, 51–62. [Google Scholar]
- Kloth, K.; Broeke, C.; Thoen, M.; Hanhart-van den Brink, M. High-throughput phenotyping of plant resistance to aphids by automated video tracking. Plant Methods 2015, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Powell, G.; Hardie, J.; Pickett, J. Effects of the antifeedant polygodial on plant penetration by aphids, assessed by video and electrical recording. Entomol. Exp. Appl. 1993, 68, 193–200. [Google Scholar] [CrossRef]
- Stec, K.; Kordan, B.; Gabryś, B. Quercetin and rutin as modifiers of aphid probing behavior. Molecules 2021, 26, 3622. [Google Scholar] [CrossRef]
- Stec, K.; Kordan, B.; Gabryś, B. Effect of soy leaf flavonoids on pea aphid probing behavior. Insects 2021, 12, 756. [Google Scholar] [CrossRef]
- Schliephake, E. Aphid resistance in raspberry and feeding behavior of Amphorophora idaei. J. Plant Dis. Prot. 2010, 117, 60–66. [Google Scholar] [CrossRef]
- Pettersson, J.; Tjallingii, W.F.; Hardie, J. Host-plant selection and feeding. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2017; pp. 173–195. [Google Scholar]
- Tjallingii, W.F. Electrical nature of recorded signals during stylet penetration by aphids. Entomol. Exp. Appl. 1985, 38, 177–186. [Google Scholar] [CrossRef]
- Chen, J.; Martin, B.; Raabe, Y.; Fereres, A. Early intracellular punctures by two aphid species on near-isogenic melon lines wih and without the virus aphid transmission (Vat) resistance gene. Eur. J. Plant Pathol. 1997, 103, 521–536. [Google Scholar] [CrossRef]
- Martin, B.; Collar, L.; Tjallingii, W.F.; Fereres, A. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J. Gen. Virol. 1997, 78, 2701–2705. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.; Moreno, A.; Fereres, A. Semipersistently transmitted, phloem limited plant viruses are inoculated during the first subphase of intracellular stylet penetrations in phloem cells. Viruses 2021, 13, 137. [Google Scholar] [CrossRef]
- Moreno, A.; Tjallingii, W.F.; Fernandez-Mata, G.; Fereres, A. Differences in the mechanism of inoculation between a semi-persistent and a non-persistent aphid-transmitted plant virus. J. Gen. Virol. 2012, 93, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A.; Palacios, I.; Blanc, S.; Fereres, A. Intracellular salivation is the mechanism involved in the inoculation of cauliflower mosaic virus by its major vectors Brevicoryne brassicae and Myzus persicae. Ann. Entomol. Soc. Am. 2005, 98, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Calvino, L.; Lopez-Abella, D.; Lopez-Moya, J.J.; Fereres, A. Comparison of Potato Virus Y and Plum Pox Virus transmission by two aphid species in relation to their probing behavior. Phytoparasitica 2006, 34, 315–324. [Google Scholar] [CrossRef]
- Grudniewska, A.; Dancewicz, K.; Białońska, A.; Wawrzeńczyk, C.; Gabryś, B. Piperitone-derived saturated lactones: Synthesis and aphid behavior-modifying activity. J. Agric. Food Chem. 2013, 61, 3364–3372. [Google Scholar] [CrossRef]
- Grudniewska, A.; Dancewicz, K.; Białońska, A.; Ciunik, Z.; Gabryś, B.; Wawrzeńczyk, C. Synthesis of piperitone-derived halogenated lactones and their effect on aphid probing, feeding, and settling behavior. RSC Adv. 2011, 1, 498–510. [Google Scholar] [CrossRef]
- Wróblewska-Kurdyk, A.; Gniłka, R.; Dancewicz, K.; Grudniewska, A.; Wawrzeńczyk, C.; Gabryś, B. β-thujone and its derivatives modify the probing behavior of the peach potato aphid. Molecules 2019, 24, 1847. [Google Scholar] [CrossRef] [PubMed]
- Dancewicz, K.; Gliszczyńska, A.; Wróblewska, A.; Wawrzeńczyk, C.; Gabryś, B. Deterrent activity of (+)-nootkatone and its derivatives towards the peach potato aphid (Myzus persicae Sulzer). Prog. Plant Prot. 2012, 52, 221–225. [Google Scholar]
- Dancewicz, K.; Gliszyńska, A.; Halarewicz, A.; Wawrzeńczyk, C.; Gabryś, B. Effect of farnesol and its synthetic derivatives on settling behavior of the peach potato aphid Myzus persicae (Sulz.). Pesticides 2010, 1–4, 51–57. [Google Scholar]
- Gliszczyńska, A.; Semba, D.; Szczepanik, M.; Dancewicz, K.; Gabryś, B. Alkyl-substituted δ-lactones derived from dihydrojasmone and their stereoselective fungi-mediated conversion: Production of new antifeedant agents. Molecules 2016, 21, 1226. [Google Scholar] [CrossRef] [Green Version]
- Chapman, R.F.; de Boer, G. Regulatory Mechanisms of Insect Feeding; Chapman, R.F., de Boer, G., Eds.; Chapman & Hall: London, UK, 1995; pp. 1–398. [Google Scholar]
- Grudniewska, A.; Kłobucki, M.; Dancewicz, K.; Szczepanik, M.; Gabryś, B.; Wawrzeńczyk, C. Synthesis and antifeedant activity of racemic and optically active hydroxy lactones with the p-menthane system. PLoS ONE 2015, 10, 0131028. [Google Scholar] [CrossRef] [Green Version]
- Dancewicz, K.; Szumny, A.; Wawrzeńczyk, C.; Gabryś, B. Repellent and antifeedant activities of citral-derived lactones against the peach potato aphid. Int. J. Mol. Sci. 2020, 21, 8029. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska-Kurdyk, A.; Dancewicz, K.; Gliszczyńska, A.; Gabryś, B. New insight into the behavior modifing activity of two natural sesquiterpenoids farnesol and nerolidol towards Myzus persicae (Sulzer) (Hmopotera: Aphididae). Bull. Entomol. Res. 2019, 110, 249–258. [Google Scholar] [CrossRef]
- Joschinski, J.; Beer, K.; Helfrich-Forster, C.; Krauss, J. Pea aphids (Hemiptera: Aphididae) have diurnal rhythms when raised independently of a host plant. J. Insect Sci. 2016, 16, 31. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, D.; Pickett, J.; Smart, L.; Woodcock, C. Use of insect antifeedants against aphid vectors of plant virus disease. Pestic. Sci. 1989, 27, 269–276. [Google Scholar] [CrossRef]
- Powell, G.; Hardie, J. Pickett, A. Laboratory evaluation of antifeedants for inhibiting settling by cereal aphids. Entomol. Exp. Appl. 1997, 84, 189–193. [Google Scholar] [CrossRef]
- Harrewijn, P. Resistance mechanisms of plant genotypes to various aphid species. In Aphid-Plant Genotype Interactions; Campbell, R.K., Eikenbary, R.D., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1990; pp. 117–130. [Google Scholar]
- Hardie, J.; Holyoak, M.; Taylor, N.J.; Griffiths, D.C. The combination of electronic monitoring and video-assisted observations of plant penetration by aphids and behavioural effects of polygodial. Entomol. Exp. Appl. 1992, 62, 233–239. [Google Scholar] [CrossRef]
- Tjallingii, W.F. Aphid-plant interactions: What goes in the depth of the tissues? Proc. Exper. Appl. Entomol. 1995, 6, 163–169. [Google Scholar]
- Nottingham, S.F.; Hardie, J. Flight behavior of the black bean aphid, Aphis fabae, and the cabbage aphid, Brevicoryne brassicae, in host and non-host plant odour. Physiol. Entomol. 1993, 18, 389–394. [Google Scholar] [CrossRef]
- Francis, F.; Vanhaelen, N.; Haubruge, E. Glutathione S-transferases in the adaptation to plant secondary metabolities in the Myzus persicae aphid. Arch. Insect Biochem. Physiol. 2005, 58, 166–174. [Google Scholar] [CrossRef]
- Symmes, E.; Walker, G.; Perring, T. Stylet penetration behavior of Myzus persicae related to transmission of Zucchini yellow mosaic virus. Entomol. Exp. Appl. 2008, 129, 258–267. [Google Scholar] [CrossRef]
- Pettersson, J.; Tjallingii, W.F.; Hardie, J. Host plant selection and feeding. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CAB International: Wallingford, UK, 2007; pp. 87–114. [Google Scholar]
- Tjallingii, W.F. Plant penetration by aphids as revealed by electrical penetration graphs. Aphids Other Homopterous Insects 2001, 8, 105–120. [Google Scholar]
- Pelkonen, O.; Abass, K.; Wiesner, J. Thujone and thujone-containing herbal medicinal and botanical products: Toxicological assessment. Regul. Toxicol. Pharm. 2013, 65, 100–107. [Google Scholar] [CrossRef]
- Giunti, G.; Benelli, G.; Palmeri, V.; Laudani, F.; Ricupero, M.; Ricciardi, R.; Maggi, F.; Lucchi, A.; Guedes, R.N.C.; Desneux, N. Non-target effects of essential oil-based biopesticides for crop protection: Impact on natural enemies, pollinators, and soil invertebrates. Biol. Control 2022, 176, 105071. [Google Scholar] [CrossRef]
Compounds | Mean Number of Aphids | |||
---|---|---|---|---|
1 h | 2 h | 24 h | ||
Geranylacetone (1) | test | 4.6 ± 0.9 | 4.8 ± 0.7 | 2.1 ± 0.6 |
control | 13.5 ± 1.0 | 12.5 ± 1.0 | 10.8 ± 1.5 | |
p | 0.0000 | 0.0000 | 0.0001 | |
Epoxygeranylacetone (2) | test | 1.8 ± 0.4 | 0.9 ± 0.3 | 1.8 ± 0.8 |
control | 6.9 ± 0.6 | 5.9 ± 1.2 | 5.4 ± 1.1 | |
p | 0.0000 | 0.0012 | 0.0148 | |
Nerylacetone (3) | test | 3.9 ± 2.3 | 4.3 ± 2.2 | 2.7 ± 2.7 |
control | 13.4 ± 1.4 | 11.4 ± 0.7 | 12.3 ± 1.9 | |
p | 0.0000 | 0.0000 | 0.0004 | |
Epoxynerylacetone (4) | test | 3.4 ± 0.4 | 4.0 ± 0.7 | 4.3 ± 0.6 |
control | 12.4 ± 0.8 | 6.8 ± 1.0 | 9.1 ± 1.5 | |
p | 0.0000 | 0.0388 | 0.0093 |
EPG Parameter | Compounds | ||||
---|---|---|---|---|---|
Control | 1 | 2 | 3 | 4 | |
General Aspects of Aphid Probing Behavior | |||||
n = 15 | n = 15 | n = 15 | n = 15 | n = 15 | |
Total duration of probing a (h) | 7.0 ± 1.3 | 6.9 ± 1.1 | 6.7 ± 1.7 | 7.2 ± 0.8 | 7.5 ± 0.3 * |
Total duration of probing in non-phloem tissues b (h) | 4.1 ± 2.1 | 3.5 ± 2.1 | 3.0 ± 2.0 | 4.0 ± 2.2 | 3.9 ± 2.4 |
Total duration of phloem phase c (h) | 2.9 ± 2.3 | 3.4 ± 2.6 | 3.8 ± 2.3 | 3.2 ± 2.7 | 3.7 ± 2.7 |
Total number of probes d (#) | 24.7 ± 9.8 | 27.9 ± 20.9 | 29.0 ± 18.5 | 23.1 ± 21.0 | 21.1 ± 15.1 |
Mean duration of a probe d (min) | 21.7 ± 17.2 | 51.3 ± 109.5 | 22.9 ± 18.5 | 42.3 ± 35.8 | 47.5 ± 52.6 |
Duration of first probe d (min) | 1.8 ± 4.3 | 33.0 ± 113.1 | 3.2 ± 6.8 | 14.1 ± 30.2 | 6.6 ± 21.2 |
Number of probes with phloem phase d (#) | 1.9 ± 1.0 | 1.3 ± 0.6 | 1.3 ± 0.7 | 1.5 ± 1.0 | 1.7 ±1.3 |
Proportion of aphids reaching phloem phase (#) | 0.9 ± 0.3 | 0.9 ± 0.3 | 0.9 ± 0.3 | 0.9 ± 0.4 | 0.9 ± 0.4 |
Time from first probe to first phloem phase (h) | 2.4 ± 2.1 | 3.9 ± 2.9 | 3.1 ± 2.3 | 3.3 ± 2.7 | 2.1 ± 2.5 |
Number of phloem phases (#) | 4.7 ± 3.0 | 1.7 ± 1.2 * | 2.0 ± 1.7 * | 3.0 ± 2.6 | 3.3 ± 3.7 |
Number of sustained sap ingestion phases e (#) | 2.1 ± 1.7 | 1.2 ± 0.9 | 1.5 ±1.1 | 1.8 ± 1.8 | 1.4 ± 1.2 |
Phloem phase index f (#) | 0.4 ± 0.3 | 0.5 ± 0.3 | 0.5 ± 0.3 | 0.4 ± 0.3 | 0.5 ± 0.3 |
Activities in Non-Phloem Tissues before the First Phloem Phase | |||||
n = 14 | n = 14 | n = 14 | n = 13 | n = 13 | |
Total duration of non-probing before first phloem phase B [h] | 0.4 ± 0.3 | 1.0 ± 1,1 | 0.6 ± 0.5 | 0.3 ± 0.4 | 0.2 ± 0.2 |
Total duration of probing in non-phloem tissues before first phloem phase B (h) | 1.6 ± 1.3 | 2.7 ± 2.0 | 2.1 ± 1.5 | 2.2 ± 1.8 | 1.1 ± 0.7 |
Number of probes before first phloem phase B (#) | 13.2 ± 9.6 | 23.6 ± 23.1 | 20.0 ± 18.2 | 12.1 ± 14.1 | 7.7 ± 8.4 |
Number of probes < 3 min. before first phloem phase B (#) | 8.0 ± 6.5 | 15.1 ± 16.6 | 14.2 ± 14.3 | 7.1 ± 9.3 | 4.1 ± 5.4 |
Activities in Sieve Elements | |||||
n = 14 | n = 14 | n = 14 | n = 13 | n = 13 | |
Duration of first phloem phase B (h) | 0.6 ± 1.5 | 1.8 ± 2.4 | 2.3 ± 2.3 | 1.3 ± 1.9 | 3.0 ± 3.0 |
Mean duration of sap ingestion B (h) | 0.9 ± 1.4 | 2.3 ± 2.2 * | 2.1 ± 2.0 | 1.5 ± 1.9 | 2.8 ± 2.8 * |
Phloem salivation index g (#) | 0.1 ± 0.1 | 0.02 ± 0.05 | 0.1 ± 0.2 | 0.1 ± 0.3 | 0.03 ± 0.1 |
EPG Parameter | Compounds | ||||
---|---|---|---|---|---|
Control | 1 | 2 | 3 | 4 | |
n = 15 | n = 15 | n = 15 | n = 15 | n = 15 | |
Proportion of probes with potential drops pd-S and pd-L (%) | 80.1 ± 11.5 | 67.0 ± 21.9 | 62.1 ± 19.8 * | 72.2 ± 19.4 | 77.4 ± 12.4 |
Short Potential Drops (pd-S) | |||||
Total number of pd-S (#) | 126.7 ± 64.8 | 95.0 ± 44.1 | 84.3 ± 46.1 * | 100.7 ± 45.2 | 116.4 ± 74.5 |
Number of pd-S during a single penetration (#) | 7.0 ± 2.8 | 9.1 ± 10.3 | 6.4 ± 3.9 | 10.4 ± 6.2 | 10.1 ± 6.9 |
Mean duration of a single pd-S (s) | 5.1 ± 1.6 | 4.3 ± 0.4 * | 5.7 ± 2.1 | 4.2 ± 1.2 * | 4.7 ± 0.9 |
Total duration of subphase II-1 of pd-S (s) | 301.1 ± 229.0 | 175.2 ± 78.9 * | 465.6 ± 370.9 | 174.7 ± 77.8 * | 237.1 ±145.5 |
Total duration of subphase II-2 of pd-S (s) | 146.4 ± 72.1 | 93.0 ± 40.3 * | 95.7 ± 84.0 * | 97.1 ± 43.8 * | 122.3 ± 80.6 |
Total duration of subphase II-3 of pd-S (s) | 209.4 ± 128.2 | 140.4 ± 70.5 | 220.1 ± 200.3 | 157.3 ± 147.2 | 190.0 ± 128.1 |
Long Potential Drops (pd-L) | |||||
Total number of pd-L (#) | 6.3 ± 4.2 | 6.6 ± 6.8 | 4.3 ± 4.4 | 5.8 ± 5.7 | 9.4 ± 8.2 |
Number of pd-L during a single penetration (#) | 0.3 ± 0.2 | 0.6 ± 0.7 | 0.2 ± 0.2 | 0.5 ± 0.3 | 0.7 ± 0.4 * |
Mean duration of a single pd-L (s) | 6.4 ± 2.2 | 5.7 ± 2.4 | 5.9 ± 2.5 | 5.8 ± 0.7 * | 6.6 ± 1.1 |
Total duration of subphase II-1 of pd-L (s) | 10.7 ± 7.4 | 11.2 ±10.8 | 7.1 ± 6.9 | 9.4 ± 10.2 | 17.6 ± 16.6 |
Total duration of subphase II-2 of pd-L (s) | 7.1 ± 4.9 | 6.6 ± 6.5 | 4.9 ± 4.7 | 5.9 ± 5.7 | 10.1 ± 9.3 |
Total duration of subphase II-3 of pd-L (s) | 26.9 ± 23.1 | 25.1 ± 27.3 | 17.8 ± 19.1 | 17.5 ± 14.6 | 37.5 ± 39.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewska-Kurdyk, A.; Dancewicz, K.; Gliszczyńska, A.; Gabryś, B. Antifeedant Potential of Geranylacetone and Nerylacetone and Their Epoxy-Derivatives against Myzus persicae (Sulz.). Molecules 2022, 27, 8871. https://doi.org/10.3390/molecules27248871
Wróblewska-Kurdyk A, Dancewicz K, Gliszczyńska A, Gabryś B. Antifeedant Potential of Geranylacetone and Nerylacetone and Their Epoxy-Derivatives against Myzus persicae (Sulz.). Molecules. 2022; 27(24):8871. https://doi.org/10.3390/molecules27248871
Chicago/Turabian StyleWróblewska-Kurdyk, Anna, Katarzyna Dancewicz, Anna Gliszczyńska, and Beata Gabryś. 2022. "Antifeedant Potential of Geranylacetone and Nerylacetone and Their Epoxy-Derivatives against Myzus persicae (Sulz.)" Molecules 27, no. 24: 8871. https://doi.org/10.3390/molecules27248871
APA StyleWróblewska-Kurdyk, A., Dancewicz, K., Gliszczyńska, A., & Gabryś, B. (2022). Antifeedant Potential of Geranylacetone and Nerylacetone and Their Epoxy-Derivatives against Myzus persicae (Sulz.). Molecules, 27(24), 8871. https://doi.org/10.3390/molecules27248871