Nanosilica-Anchored Polycaprolactone/Chitosan Nanofibrous Bioscaffold to Boost Osteogenesis for Bone Tissue Engineering
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Morphology Characterization of the PCL/CS and PCL/Cs/SiO2 Bioscaffolds
2.2. Biological Tests of PCL/CS and PCL/CS/SiO2 Bioscaffolds
2.2.1. Microphotographs and SEM Images of CBDCs on the PCL/CS and PCL/CS/SiO2 Bioscaffolds
2.2.2. Cell Adhesion and Proliferation Assay with CBDCs
2.3. Osteogenic Differentiation and Evaluation
3. Materials and Methods
3.1. Materials Synthesis and Characterization
3.1.1. Synthesis of PCL/CS and PCL/CS/SiO2 Bioscaffolds
3.1.2. Materials Characterization
3.2. Cell Measurement
3.2.1. Preparation of Mouse CBDCs
3.2.2. Cell Adhesion and Proliferation
3.2.3. Osteogenic Induction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tan, B.; Tang, Q.; Zhong, Y.; Wei, Y.; He, L.; Wu, Y.; Wu, J.; Liao, J. Biomaterial-based Strategies for Maxillofacial Tumour Therapy and Bone Defect Regeneration. Int. J. Oral Sci. 2021, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Favinger, J.L.; Ha, A.S.; Brage, M.E.; Chew, F.S. Osteoarticular Transplantation: Recognizing Expected Postsurgical Appearances and Complications. Radiographics 2015, 35, 780–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, T.; Ma, J.; Ni, S.; Liu, C.; Wang, Y.; Wu, S.; Liu, J.; Weng, Y.; Zhou, D.; Jimenez-Franco, A.; et al. Attapulgite-doped Electrospun PCL Scaffolds for Enhanced Bone Regeneration in Rat Ranium Defects. Biomater. Adv. 2022, 133, 112656. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.H. Autologous Bone Graft: Is It Still the Gold Standard? Injury 2021, 52 (Suppl. 2), S18–S22. [Google Scholar] [CrossRef]
- Ghorbani, F.; Ghalandari, B.; Sahranavard, M.; Zamanian, A.; Collins, M.N. Tuning the Biomimetic Behavior of Hybrid Scaffolds for Bone Tissue Engineering Through Surface Modifications and Drug Immobilization. Mater. Sci. Eng. C 2021, 130, 112434. [Google Scholar] [CrossRef]
- Harimtepathip, P.; Callaway, L.F.; Sinkler, M.A.; Sharma, S.; Homlar, K.C. Progressive Osteolysis after Use of Synthetic Bone Graft Substitute. Cureus 2021, 13, e20002. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lan, W.; Qin, W. Fabrication of Polylactic Acid/Carbon Nanotubes/Chitosan Composite Fibers by Electrospinning for Strawberry Preservation. Int. J. Biol. Macromol. 2019, 121, 1329–1336. [Google Scholar] [CrossRef]
- Lizarraga-Valderrama, L.R.; Taylor, C.S.; Claeyssens, F.; Haycock, J.W.; Knowles, J.C.; Roy, I. Unidirectional Neuronal Cell Growth and Differentiation on Aligned Polyhydroxyalkanoate Blend Microfibres with Varying Diameters. J. Tissue Eng. Regen. Med. 2019, 13, 1581–1594. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, F.; Raza, Z.A.; Batool, S.R.; Zahid, M.; Onder, O.C.; Rafique, A.; Nazeer, M.A. Preparation, Properties, and Applications of Gelatin-based Hydrogels (GHs) in The Environmental, Technological, and Biomedical sectors. Int. J. Biol. Macromol. 2022, 218, 601–633. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, S.; García, A.; González-Jiménez, A.; Vallet-Regí, M. Antibacterial Effect of 3D Printed Mesoporous Bioactive Glass Scaffolds Doped with Metallic Silver Nanoparticles. Acta Biomater. 2022, 22, 00702–00704. [Google Scholar] [CrossRef]
- García-Valderrama, E.J.; Mamidi, N.; Antunes-Ricardo, M.; Gutiérrez-Uribe, J.A.; Angel-Sanchez, K.D.; Elías-Zúñiga, A. Engineering and Evaluation of Forcespun Gelatin Nanofibers as an Isorhamnetin Glycosides Delivery System. Pharmaceutics 2022, 6, 1116. [Google Scholar] [CrossRef]
- Mamidi, N.; Delgadillo, R.M.V.; González-Ortiz, A. Engineering of Carbon Nano-onion Bioconjugates for Biomedical Applications. Mater. Sci. Eng. C 2021, 120, 111698. [Google Scholar] [CrossRef] [PubMed]
- Ezati, M.; Safavipour, H.; Houshmand, B.; Faghihi, S. Development of a PCL/Gelatin/Chitosan/Beta-TCP Electrospun Composite for Guided Bone Regeneration. Prog. Biomater. 2018, 7, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Hong, Y. Enhancing Cell Infiltration of Electrospun Fibrous Scaffolds in Tissue Regeneration. Bioact. Mater. 2016, 1, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Chyu, J.; Zumwalt, M. Recent Progress of Fabrication of Cell Scaffold by Electrospinning Technique for Articular Cartilage Tissue Engineering. Int. J. Biomater. 2018, 2018, 1953636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Zhong, Z.; Ma, J. Biomimetic Synthesis of Hybrid Hydroxyapatite Nanoparticles Using Nanogel Template for Controlled Release of Bovine Serum Albumin. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 62, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Delaine-Smith, R.M.; Hann, A.J.; Green, N.H.; Reilly, G.C. Electrospun Fiber Alignment Guides Osteogenesis and Matrix Organization Differentially in two Different Osteogenic Cell Types. Front. Bioeng. Biotechnol. 2021, 9, 672959. [Google Scholar] [CrossRef]
- Qu, X.; Wang, M.; Wang, M.; Tang, H.; Zhang, S.; Yang, H.; Yuan, W.; Wang, Y.; Yang, J.; Yue, B. Multi-mode Antibacterial Strategies Enabled by Gene-transfection and Immunomodulatory Nanoparticles in 3D-printed Scaffolds for Synergistic Exogenous and Endogenous Treatment of Infections. Adv. Mater. 2022, 34, e2200096. [Google Scholar] [CrossRef]
- Abarzua-Illanes, P.N.; Padilla, C.; Ramos, A.; Isaacs, M.; Ramos-Grez, J.; Olguin, H.C.; Valenzuela, L.M. Improving Myoblast Differentiation on Electrospun Poly(Epsilon-caprolactone) Scaffolds. J. Biomed. Mater. Res. A 2017, 105, 2241–2251. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, X.; Du, Z.; Jiang, W.; Han, X.; Zhao, D.; Han, D.; Li, Q. Three Dimensional Printed Macroporous Polylactic Acid/Hydroxyapatite Composite Scaffolds for Promoting Bone Formation in a Critical-Size Rat Calvarial Defect Model. Sci. Technol. Adv. Mater. 2016, 17, 136–148. [Google Scholar] [CrossRef]
- Vert, M. Bioabsorbable Polymers in Medicine: An Overview. EuroIntervention 2009, 5 (Suppl. F), F9–F14. [Google Scholar] [CrossRef] [PubMed]
- Ghahremanzadeh, F.; Alihosseini, F.; Semnani, D. Investigation and Comparison of New Galactosylation Methods on PCL/Chitosan Scaffolds for Enhanced Liver Tissue Engineering. Int. J. Biol. Macromol. 2021, 174, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Fadaie, M.; Mirzaei, E.; Geramizadeh, B.; Asvar, Z. Incorporation of Nanofibrillated Chitosan into Electrospun PCL Nanofibers Makes Scaffolds with Enhanced Mechanical and Biological Properties. Carbohydr. Polym. 2018, 199, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Maji, S.; Agarwal, T.; Das, J.; Maiti, T.K. Development of Gelatin/Carboxymethyl Chitosan/Nano-hydroxyapatite Composite 3D Macroporous Scaffold for Bone Tissue Engineering Applications. Carbohydr. Polym. 2018, 189, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Qu, X.; Zhang, W.; Chen, X.; Zhang, S.; Xu, Y.; Yang, H.; Wang, Y.; Yang, J.; Yuan, W.E.; et al. Photosensitizer Nanodot Eliciting Immunogenicity for Photo-immunologic Therapy of Postoperative Methicillin-resistant Staphylococcus Aureus Infection and Secondary Recurrence. Adv. Mater. 2022, 34, e2107300. [Google Scholar] [CrossRef] [PubMed]
- Heidari, M.; Bahrami, S.H.; Ranjbar-Mohammadi, M.; Milan, P.B. Smart Electrospun Nanofibers Containing PCL/Gelatin/Graphene Oxide for Application in Nerve Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109768. [Google Scholar] [CrossRef]
- Douglas, P.; Albadarin, A.B.; Sajjia, M.; Mangwandi, C.; Kuhs, M.; Collins, M.N.; Walker, G.M. Effect of Poly Ethylene Glycol on The Mechanical and Thermal Properties of Bioactive Poly(ε-caprolactone) Melt Extrudates for Pharmaceutical Applications. Int. J. Pharm. 2016, 500, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Saderi, N.; Rajabi, M.; Akbari, B.; Firouzi, M.; Hassannejad, Z. Fabrication and Characterization of Gold Nanoparticle-doped Electrospun PCL/Chitosan Nanofibrous Scaffolds for Nerve Tissue Engineering. J. Mater. Sci. Mater. Med. 2018, 29, 134. [Google Scholar] [CrossRef]
- Mahoney, C.; Conklin, D.; Waterman, J.; Sankar, J.; Bhattarai, N. Electrospun Nanofibers of Poly(Epsilon-caprolactone)/Depolymerized Chitosan for Respiratory Tissue Engineering Applications. J. Biomater. Sci. Polym. Ed. 2016, 27, 611–625. [Google Scholar] [CrossRef]
- Rahmani, A.; Hashemi-Najafabadi, S.; Eslaminejad, M.B.; Bagheri, F.; Sayahpour, F.A. The Effect of Modified Electrospun PCL-nHA-nZnO Scaffolds on Osteogenesis and Angiogenesis. J. Biomed. Mater. Res. A 2019, 107, 2040–2052. [Google Scholar] [CrossRef]
- Nie, B.; Huo, S.; Qu, X.; Guo, J.; Liu, X.; Hong, Q.; Wang, Y.; Yang, J.; Yue, B. Bone Infection Site Targeting Nanoparticle-antibiotics Delivery Vehicle to Enhance Treatment Efficacy of Orthopedic Implant Related Infection. Bioact. Mater. 2022, 16, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Jiang, D.; Zhang, Z.Z.; Chen, Y.R.; Yang, Z.D.; Zhang, J.Y.; Shi, J.; Wang, X.; Yu, J.K. Biomimetic Nanosilica-collagen Scaffolds for in situ Bone Regeneration: Toward a Cell-free, One-step Surgery. Adv. Mater. 2019, 31, e1904341. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cui, W.; Chou, J.; Wen, S.; Sun, Y.; Zhang, H. Electrospun Nanosilicates-based Organic/Inorganic Nanofibers for Potential Bone Tissue Engineering. Colloids Surf. B Biointerfaces 2018, 172, 90–97. [Google Scholar] [CrossRef]
- Douglas, P.; Kuhs, M.; Sajjia, M.; Khraisheh, M.; Walker, G.; Collins, M.N.; Albadarin, A.B. Bioactive PCL Matrices with a Range of Structural & Rheological Properties. React. Funct. Polym. 2016, 101, 54–62. [Google Scholar]
- Mamidi, N.; Zuníga, A.E.; Villela-Castrejón, J. Engineering and Evaluation of Forcespun Functionalized Carbon Nano-onions Reinforced Poly (ε-caprolactone) Composite Nanofibers for PH-responsive Drug Release. Mater. Sci. Eng. C 2020, 112, 110928. [Google Scholar] [CrossRef] [PubMed]
- Guan, P.; Zhang, W.; Li, C.; Han, N.; Wang, X.; Li, Q.; Song, G.; Peng, Z.; Li, J.; Zhang, L.; et al. Low-cost Urchin-like Silicon-based Anode with Superior Conductivity for Lithium Storage Applications. J. Colloid Interface Sci. 2020, 575, 150–157. [Google Scholar] [CrossRef]
- Elgali, I.; Turri, A.; Xia, W.; Norlindh, B.; Johansson, A.; Dahlin, C.; Thomsen, P.; Omar, O. Guided Bone Regeneration Using Resorbable Membrane and Different Bone Substitutes: Early Histological and Molecular Events. Acta Biomater. 2016, 29, 409–423. [Google Scholar] [CrossRef]
- Simonet, M.; Stingelin, N.; Wismans, J.G.F.; Oomens, C.W.J.; Driessen-Mol, A.; Baaijens, F.P.T. Tailoring the Void Space and Mechanical Properties in Electrospun Scaffolds towards Physiological Ranges. J. Mater. Chem. B 2014, 2, 305–313. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Tung, K.L.; Lin, Y.L.; Dong, C.D.; Chen, C.W.; Wu, C.H. Modifying Thin-film Composite forward Osmosis Membranes Using Various SiO2 Nanoparticles for Aquaculture Wastewater Recovery. Chemosphere 2021, 281, 130796. [Google Scholar] [CrossRef]
- Hwang, P.T.; Murdock, K.; Alexander, G.C.; Salaam, A.D.; Ng, J.I.; Lim, D.J.; Dean, D.; Jun, H.W. Poly(Varepsilon-Caprolactone)/Gelatin Composite Electrospun Scaffolds with Porous Crater-like Structures for Tissue Engineering. J. Biomed. Mater. Res. A 2016, 104, 1017–1029. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xu, W.; Shafiq, M.; Tang, J.; Hao, J.; Xie, X.; Yuan, Z.; Xiao, X.; Liu, Y.; Mo, X. Three-dimensional Porous Gas-foamed Electrospun Nanofiber Scaffold for Cartilage Regeneration. J. Colloid Interface Sci. 2021, 603, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Dong, Y.; Xiao, J.; Gu, R.; Ding, M.; Huang, T.; Li, J.; Zhao, N.; Liao, H. In vivo Immuno-Reactivity Analysis of the Porous Three-dimensional Chitosan/SiO2 and Chitosan/SiO2 /Hydroxyapatite Hybrids. J. Biomed. Mater. Res. A 2018, 106, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Hokmabad, V.R.; Davaran, S.; Aghazadeh, M.; Alizadeh, E.; Salehi, R.; Ramazani, A. A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(Epsilon-caprolactone)-Poly(Ethylene Glycol)-Poly(Epsilon-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering. Tissue Eng. Regen. Med. 2018, 15, 735–750. [Google Scholar] [CrossRef]
- Ahmadi, T.; Monshi, A.; Mortazavi, V.; Fathi, M.H.; Sharifi, S.; Kharaziha, M.; Khazdooz, L.; Zarei, A.; Taghian Dehaghani, M. Fabrication and Characterization of Polycaprolactone Fumarate/Gelatin-based Nanocomposite Incorporated with Silicon and Magnesium Co-doped Fluorapatite Nanoparticles Using Electrospinning Method. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110172. [Google Scholar] [CrossRef] [PubMed]
- Perez-Campo, F.M.; Santurtun, A.; Garcia-Ibarbia, C.; Pascual, M.A.; Valero, C.; Garces, C.; Sanudo, C.; Zarrabeitia, M.T.; Riancho, J.A. Osterix and RUNX2 are Transcriptional Regulators of Sclerostin in Human Bone. Calcif. Tissue Int. 2016, 99, 302–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, A.; Alves da Silva, M.L.; Faria, S.; Marques, A.P.; Reis, R.L.; Neves, N.M. The Influence of Patterned Nanofiber Meshes on Human Mesenchymal Stem Cell Osteogenesis. Macromol. Biosci. 2011, 11, 978–987. [Google Scholar] [CrossRef] [Green Version]
- Shaabani, A.; Sedghi, R. Preparation of Chitosan Biguanidine/PANI-containing Self-healing Semi-conductive Waterborne Scaffolds for Bone Tissue Engineering. Carbohydr. Polym. 2021, 264, 118045. [Google Scholar] [CrossRef]
- Hassan, M.I.; Sultana, N. Characterization, Drug Loading and Antibacterial Activity of Nanohydroxyapatite/Polycaprolactone (nHA/PCL) Electrospun Membrane. 3 Biotech 2017, 7, 249. [Google Scholar] [CrossRef] [Green Version]
- Obaid, M.; Ghouri, Z.K.; Fadali, O.A.; Khalil, K.A.; Almajid, A.A.; Barakat, N.A. Amorphous SiO2 NP-incorporated Poly(Vinylidene Fluoride) Electrospun Nanofiber Membrane for High Flux forward Osmosis Desalination. ACS Appl. Mater. Interfaces 2016, 8, 4561–4574. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, X.; Li, X.; Jia, D.; Li, D.; Ma, Z.; Li, J. Flexible Porous Silicon/Carbon Fiber Anode for High-Performance Lithium-ion Batteries. Materials 2022, 15, 3190. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, Z.K.; Jiang, X.X.; Li, H.; Wang, X.Y.; Yao, H.Y.; Zhang, Y.; Mao, N. A Protocol for Isolation and Culture of Mesenchymal Stem Cells from Mouse Compact Bone. Nat. Protoc. 2010, 5, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, X.; Li, N.; Dong, H.; Zhang, Y.; Yoshizawa, M.; Kagami, H. Spontaneously Formed Spheroids from Mouse Compact Bone-derived Cells Retain Highly Potent Stem Cells with Enhanced Differentiation Capability. Stem. Cells Int. 2019, 2019, 8469012. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Cao, X.; Zhao, B.; Song, C.; Pang, B.; Hu, L.; Zhang, C.; Wang, J.; He, J.; Wang, S. Nitrate Increases Cisplatin Chemosensitivity of Oral Squamous Cell Carcinoma via REDD1/AKT Signaling Pathway. Sci. China Life Sci. 2021, 64, 1814–1828. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.B.; Frankovsky, R.; Schnick, W. Synthesis of Alkaline Earth Diazenides MAEN2 (MAE = Ca, Sr, Ba) by Controlled Thermal Decomposition of Azides under High Pressure. Inorg. Chem. 2012, 51, 2366–2373. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, S.; Zhu, X.; Zhang, C.; Jia, D.; Shang, W.; Ding, C.; Yang, J.; Feng, Y. Nanosilica-Anchored Polycaprolactone/Chitosan Nanofibrous Bioscaffold to Boost Osteogenesis for Bone Tissue Engineering. Molecules 2022, 27, 8832. https://doi.org/10.3390/molecules27248832
Ge S, Zhu X, Zhang C, Jia D, Shang W, Ding C, Yang J, Feng Y. Nanosilica-Anchored Polycaprolactone/Chitosan Nanofibrous Bioscaffold to Boost Osteogenesis for Bone Tissue Engineering. Molecules. 2022; 27(24):8832. https://doi.org/10.3390/molecules27248832
Chicago/Turabian StyleGe, Shengyou, Xiaoyi Zhu, Chuanlong Zhang, Dongchen Jia, Wei Shang, Chao Ding, Jianping Yang, and Yuanyong Feng. 2022. "Nanosilica-Anchored Polycaprolactone/Chitosan Nanofibrous Bioscaffold to Boost Osteogenesis for Bone Tissue Engineering" Molecules 27, no. 24: 8832. https://doi.org/10.3390/molecules27248832
APA StyleGe, S., Zhu, X., Zhang, C., Jia, D., Shang, W., Ding, C., Yang, J., & Feng, Y. (2022). Nanosilica-Anchored Polycaprolactone/Chitosan Nanofibrous Bioscaffold to Boost Osteogenesis for Bone Tissue Engineering. Molecules, 27(24), 8832. https://doi.org/10.3390/molecules27248832