By-Product of the Red Ginseng Manufacturing Process as Potential Material for Use as Cosmetics: Chemical Profiling and In Vitro Antioxidant and Whitening Activities
Abstract
:1. Introduction
2. Results
2.1. Yield in Various Solvent Extracts
2.2. Antioxidant Activity In Vitro
2.3. Inhibitory Activities against Tyrosinase and Elastase
2.4. Analysis of Tyrosinase Inhibition
2.5. Analysis of Elastase Inhibition
2.6. Identification of Ginsenosides
2.7. Identification of RG-CE and SGD-CE with GC-MS
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Sample Preparation
4.3. Evaluation of In Vitro Antioxidant Activity
4.3.1. Hydroxyl Radical Assay
4.3.2. DPPH Scavenging Activity Assay
4.3.3. ABTS+ Scavenging Activity Assay
4.4. Kinetics Assay
4.4.1. Tyrosinase and Elastase Inhibition
4.4.2. Kinetic Analysis for the Tyrosinase Inhibition
4.4.3. Kinetic Analysis for Elastase Inhibition
4.5. Mass Spectrographic Assay
4.5.1. Liquid Chromatographic and Mass Spectrometric Conditions
4.5.2. GC-MS Measurements for Volatile Identification
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, D.; Park, M.; Haleem, I.; Lee, Y.; Koo, J.; Na, Y.C.; Song, G.; Lee, J. Natural Product Ginsenoside 20(S)-25-Methoxyl-Dammarane-3β, 12β, 20-Triol in Cancer Treatment: A Review of the Pharmacological Mechanisms and Pharmacokinetics. Front. Pharmacol. 2020, 11, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-J.; Perumalsamy, H.; Castro-Aceituno, V.; Kim, D.; Markus, J.; Lee, S.; Kim, S.; Liu, Y.; Yang, D.C. Photoluminescent And Self-Assembled Hyaluronic Acid-Zinc Oxide-Ginsenoside Rh2 Nanoparticles And Their Potential Caspase-9 Apoptotic Mechanism Towards Cancer Cell Lines. Int. J. Nanomed. 2019, 14, 8195–8208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zhou, Y.; Fan, H.; Billy, K.J.; Zhao, Y.; Zhan, X.; Yang, L.; Jia, Y. Effects of Lycium barbarum Polysaccharides on Health and Aging of C. elegans Depend on daf-12/daf-16. Oxidative Med. Cell. Longev. 2019, 2019, 6379493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wang, X.; Si, H. Anti-adipogenic Effects and Mechanisms of Ginsenoside Rg3 in Pre-adipocytes and Obese Mice. Front. Pharmacol. 2017, 8, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, M.; Luo, Y.; Lu, S.; Sun, J.; Yang, K.; Sun, G.; Sun, X. Ginsenoside F1 Ameliorates Endothelial Cell Inflammatory Injury and Prevents Atherosclerosis in Mice through A20-Mediated Suppression of NF-kB Signaling. Front. Pharmacol. 2017, 8, 953. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kong, G.; Tran, Q.; Kim, C.; Park, J.; Park, J. Relationship between ginsenoside Rg3 and metabolic syndrome. Front Pharmacol. 2020, 11, 130. [Google Scholar] [CrossRef]
- Kim, M.-H.; Kim, K.-T.; Sohn, S.-Y.; Lee, J.-Y.; Lee, C.H.; Yang, H.; Lee, B.K.; Lee, K.W.; Kim, D.-D. Formulation and Evaluation of Nanostructured Lipid Carriers (NLCs) of 20(S)-Protopanaxadiol (PPD) by Box-Behnken Design. Int. J. Nanomed. 2019, 14, 8509–8520. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zheng, P.; Pang, S.; Wang, Y. Analysis of ether-soluble components in ginseng, red ginseng and steamed ginseng water by GC-MS. Med. Plant 2010, 1, 28–31. [Google Scholar]
- Jiang, Z.; Jacob, J.A.; Loganathachetti, D.S.; Nainangu, P.; Chen, B. β-Elemene: Mechanistic Studies on Cancer Cell Interaction and Its Chemosensitization Effect. Front. Pharmacol. 2017, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-Y.; Lee, S.-H.; Lee, K.-S.; Yoon, H.-K.; Yoo, Y.-C.; Lee, J.; Choi, J.E.; Kim, P.-H.; Park, S.-R. Ginsenoside Rg1 and 20(S)-Rg3 Induce IgA Production by Mouse B Cells. Immune Netw. 2015, 15, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Van der Pol, A.; Van Gilst, W.H.; Voors, A.A.; Van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Hear. Fail. 2019, 21, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P.D.; Pauwels, L.; et al. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. Nat. Commun. 2017, 8, 14153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.J.; Park, Y.H.; Jeon, S.G.; Kim, S.; Nam, Y.; Oh, S.-M.; Lee, Y.Y.; Moon, M. Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation In Vitro. Oxidative Med. Cell. Longev. 2020, 2020, 7829842. [Google Scholar] [CrossRef] [PubMed]
- Joly-Tonetti, N.; Wibawa, J.I.D.; Bell, M.; Tobin, D. Melanin fate in the human epidermis: A reassessment of how best to detect and analyse histologically. Exp. Dermatol. 2016, 25, 501–504. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ye, Y.; Ran, M.; Li, Q.; Ruan, Z.; Jin, N. Inhibition of Tyrosinase by Mercury Chloride: Spectroscopic and Docking Studies. Front. Pharmacol. 2020, 11, 81. [Google Scholar] [CrossRef]
- Lv, J.; Jiang, S.; Yang, Y.; Zhang, X.; Gao, R.; Cao, Y.; Song, G. FGIN-1-27 inhibits melanogenesis by regulating protein kinase A/cAMP-responsive element-binding, protein kinase C-β, and mitogen-activated protein kinase pathways. Front Pharmacol. 2020, 11, 602889. [Google Scholar] [CrossRef]
- Ding, X.J.; Zhang, Z.Y.; Jin, J.; Han, J.X.; Wang, Y.; Yang, K.; Yang, Y.Y.; Wang, H.Q.; Dai, X.T.; Yao, C.; et al. Salidroside can target both P4HB-mediated inflammation and melanogenesis of the skin. Theranostics 2020, 10, 11110–11126. [Google Scholar] [CrossRef]
- Park, K.Y.; Kim, J. Synthesis and biological evaluation of the anti-melanogenesis effect of coumaric and caffeic acid-conjugated peptides in human melanocytes. Front Pharmacol. 2020, 11, 922. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Li, H.; Li, Y.; Zhu, H.; Jin, Y.-H. Identification of natural compounds targeting Annexin A2 with an anti-cancer effect. Protein Cell 2018, 9, 568–579. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhao, Y.; Yang, J.; Liu, S.; Ni, W.; Bai, X.; Yang, Z.; Zhao, D.; Liu, M. Ginseng polysaccharide attenuates red blood cells oxidative stress injury by regulating red blood cells glycolysis and liver gluconeogenesis. J. Ethnopharmacol. 2022, 300, 115716. [Google Scholar] [CrossRef]
- Kimura, Y.; Sumiyoshi, M.; Kawahira, K.; Sakanaka, M. Effects of ginseng saponins isolated from Red Ginseng roots on burn wound healing in mice. J. Cereb. Blood Flow Metab. 2006, 148, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Markus, J.; Kim, Y.-J.; Wang, C.; Perez, Z.E.J.; Ahn, S.; Aceituno, V.C.; Mathiyalagan, R.; Yang, D.C. Coalescence of functional gold and monodisperse silver nanoparticles mediated by black Panax ginseng Meyer root extract. Int. J. Nanomed. 2016, 11, 6621–6634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Y.; Lin, Y.; Si, Q.; Yang, L.; Dong, W.; Gu, X. Ginsenoside Rb2 Alleviates Obesity by Activation of Brown Fat and Induction of Browning of White Fat. Front. Endocrinol. 2019, 10, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Wang, Y.; Guo, R.; Li, S.; Ni, J.; Gao, S.; Gao, X.; Mao, J.; Zhu, Y.; Wu, P.; et al. Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury. J. Control. Release 2020, 317, 259–272. [Google Scholar] [CrossRef]
- Li, X.; Lin, J.; Gao, Y.; Han, W.; Chen, D. Antioxidant activity and mechanism of Rhizoma Cimicifugae. Chem. Central J. 2012, 6, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, S.-L.; Lim, G.T.; Yin, S.-J.; Lee, J.; Si, Y.-X.; Yang, J.-M.; Park, Y.-D.; Qian, G.-Y. The inhibitory effect of pyrogallol on tyrosinase activity and structure: Integration study of inhibition kinetics with molecular dynamics simulation. Int. J. Biol. Macromol. 2019, 121, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.-M.; Lin, M.-Z.; Wang, Y.-X.; Xu, K.-L.; Huang, W.-Y.; Pan, D.-D.; Zou, Z.-R.; Peng, Y.-Y. Inhibition of tyrosinase by cherimoya pericarp proanthocyanidins: Structural characterization, inhibitory activity and mechanism. Food Res. Int. 2017, 100, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.A.; Jung, M.; Lee, S.M.; Lee, T.H.; Kim, J. Protective effect of disporum sessile D.Don extract against UVB-induced photoaging via suppressing MMP-1 expression and collagen degradation in human skin cells. J. Photochem. Photobiol. B 2014, 133, 73–79. [Google Scholar] [CrossRef]
- Brás, N.F.; Gonçalves, R.; Mateus, N.; Fernandes, P.A.; Ramos, M.J.; de Freitas, V. Inhibition of Pancreatic Elastase by Polyphenolic Compounds. J. Agric. Food Chem. 2010, 58, 10668–10676. [Google Scholar] [CrossRef]
- Perreault, H.; Costello, C.E. Liquid secondary ionization, tandem and matrix-assisted laser desorption/ionization time-of-flight mass spectrometric characterization of glycosphingolipid derivatives. Biol. Mass Spectrom. 1994, 29, 720–735. [Google Scholar] [CrossRef]
- Liu, S.; Cui, M.; Liu, Z.; Song, F.; Mo, W. Structural analysis of saponins from medicinal herbs using electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 133–141. [Google Scholar] [CrossRef]
- Sun, C.; Chen, Y.; Li, X.; Tai, G.; Fan, Y.; Zhou, Y. Anti-Hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice. Food Funct. 2014, 5, 845–848. [Google Scholar] [CrossRef] [PubMed]
- In, G.; Ahn, N.-G.; Bae, B.-S.; Lee, M.-W.; Park, H.-W.; Jang, K.H.; Cho, B.-G.; Han, C.K.; Park, C.K.; Kwak, Y.-S. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng. J. Ginseng Res. 2016, 41, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyun, S.H.; Kim, S.W.; Seo, H.W.; Youn, S.H.; Kyung, J.S.; Lee, Y.Y.; In, G.; Park, C.-K.; Han, C.-K. Physiological and pharmacological features of the non-saponin components in Korean Red Ginseng. J. Ginseng Res. 2020, 44, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Panda, P.; Dash, P.; Ghosh, G. Chemometric profile, antioxidant and tyrosinase inhibitory activity of Camel’s foot creeper leaves (Bauhinia vahlii). Nat. Prod. Res. 2018, 32, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Nam, G.B.; Park, J.S. Protopanaxatriol inhibits melanin synthesis through inactivation of the pCREB-MITF-tyrosinase signalling pathway in melanocytes. Clin. Exp. Dermatol. 2019, 44, 295–299. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, W.J.; Chang, S.E.; Lee, G.-Y. Antimelanogenic effect of ginsenoside Rg3 through extracellular signal-regulated kinase-mediated inhibition of microphthalmia-associated transcription factor. J. Ginseng Res. 2015, 39, 238–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.Y.; Jeong, Y.T.; Jeong, S.C.; Lee, M.K.; Min, J.W.; Lee, J.W.; Kim, G.S.; Lee, S.E.; Ahn, Y.S.; Kang, H.C.; et al. Melanin Biosynthesis Inhibition Effects of Ginsenoside Rb2 Isolated from Panax ginseng Berry. J. Microbiol. Biotechnol. 2015, 25, 2011–2015. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, M.; Ma, J.; Chinnathambi, A.; Alharbi, S.A.; Shair, O.H.M.; Ge, P. Protective effect of panaxydol against repeated administration of aristolochic acid on renal function and lipid peroxidation products via activating Keap1-Nrf2/ARE pathway in rat kidney. J. Biochem. Mol. Toxicol. 2021, 35, e22619. [Google Scholar] [CrossRef]
- Ho, D.-K.; Christmann, R.; Murgia, X.; De Rossi, C.; Frisch, S.; Koch, M.; Schaefer, U.F.; Loretz, B.; Desmaele, D.; Couvreur, P.; et al. Synthesis and Biopharmaceutical Characterization of Amphiphilic Squalenyl Derivative Based Versatile Drug Delivery Platform. Front. Chem. 2020, 8, 584242. [Google Scholar] [CrossRef] [PubMed]
- Samec, D.; Loizzo, M.R.; Gortzi, O.; Çankaya, I.T.; Tundis, R.; Suntar, I.; Shirooie, S.; Zengin, G.; Devkota, H.P.; Reboredo-Rodriguez, P.; et al. The potential of pumpkin seed oil as a functional food—A comprehensive review of chemical composition, health benefits, and safety. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4422–4446. [Google Scholar] [CrossRef] [PubMed]
- Gohil, N.; Bhattacharjee, G.; Khambhati, K.; Braddick, D.; Singh, V. Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front. Bioeng. Biotechnol. 2019, 7, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.H.; Zhang, D.; Yu, B.; Zhao, S.P.; Cao, W.G. Antioxidant activity of the different polar solvent extracts of Magnolia officinalis leaves and purification of main active compounds. Eur. Food Res. Technol. 2015, 240, 815–822. [Google Scholar] [CrossRef]
- Kubiak-Tomaszewska, G.; Roszkowski, P.; Grosicka-Maciąg, E.; Strzyga-Łach, P.; Struga, M. Effect of Hydroxyl Groups Esterification with Fatty Acids on the Cytotoxicity and Antioxidant Activity of Flavones. Molecules 2022, 27, 420. [Google Scholar] [CrossRef]
- Yildiztekin, F.; Nadeem, S.; Erol, E.; Yildiztekin, M.; Tuna, A.L.; Ozturk, M. Antioxidant, anticholinesterase and tyrosinase inhibition activities, and fatty acids of Crocus mathewii—A forgotten endemic angiosperm of Turkey. Pharm Biol. 2016, 54, 1557–1563. [Google Scholar] [CrossRef] [Green Version]
- Jerkovic, I.; Marijanovic, Z. Oak (Quercus frainetto Ten.) honeydew honey—Approach to screening of volatile organic composition and antioxidant capacity (DPPH and FRAP assay). Molecules 2010, 15, 3744–3756. [Google Scholar] [CrossRef] [Green Version]
- Ying, A.; Yu, Q.-T.; Guo, L.; Zhang, W.-S.; Liu, J.-F.; Li, Y.; Song, H.; Li, P.; Qi, L.-W.; Ge, Y.-Z. Structural–Activity Relationship of Ginsenosides from Steamed Ginseng in the Treatment of Erectile Dysfunction. Am. J. Chin. Med. 2018, 46, 137–155. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Liu, G.; Li, J.; Zhang, J.; Cao, Y.; Miao, J. Antioxidant Activity and Mechanism of Resveratrol and Polydatin Isolated from Mulberry (Morus alba L.). Molecules 2021, 26, 7574. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, X.; Wang, M.; Li, B.; Liu, Z.; Liu, S. Chemical and antihyperglycemic activity changes of ginseng pectin induced by heat processing. Carbohydr. Polym. 2014, 114, 567–573. [Google Scholar] [CrossRef]
- Hua, Y.; Ma, C.; Wei, T.; Zhang, L.; Shen, J. Collagen/Chitosan Complexes: Preparation, Antioxidant Activity, Tyrosinase Inhibition Activity, and Melanin Synthesis. Int. J. Mol. Sci. 2020, 21, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, G.H.; Park, K.Y.; Cho, H.I.; Lee, S.M.; Han, J.S.; Won, C.H.; Chang, S.E.; Lee, M.W.; Choi, J.H.; Moon, K.C.; et al. Red ginseng extract promotes the hair growth in cultured human hair follicles. J. Med. Food 2015, 18, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Mann, T.; Gerwat, W.; Batzer, J.; Eggers, K.; Scherner, C.; Wenck, H.; Stäb, F.; Hearing, V.J.; Röhm, K.H.; Kolbe, L. Inhibition of human tyrosinase requires molecular motifs distinctively different from mushroom tyrosinase. J. Investig. Dermatol. 2018, 138, 1601–1608. [Google Scholar] [CrossRef] [Green Version]
- Horng, C.T.; Wu, H.C.; Chiang, N.N.; Lee, C.F.; Huang, Y.S.; Wang, H.Y.; Yang, J.S.; Chen, F.A. Inhibitory effect of burdock leaves on elastase and tyrosinase activity. Exp. Ther. Med. 2017, 14, 3247–3252. [Google Scholar] [CrossRef] [PubMed]
Samples | Freeze-Dried Powder (FDP) | Chloroform Extract (CE) | Ethyl Acetate Extract (EAE) | N-Butanol Extract (NBE) | Water Extract (WE) |
---|---|---|---|---|---|
RG | 39.88 ± 2.59 | 1.46 ± 0.08 | 0.91 ± 0.11 | 25.93 ± 2.78 | 64.19 ± 3.82 |
SGD | 1.40 ± 0.02 | 0.15 ± 0.02 | 0.57 ± 0.05 | 8.51 ± 0.83 | 86.28 ± 3.96 |
No. | Identity | Formula | MW | RG | SGD | [M−H]− | [M+COOH]− | MS/MS Fragment Ion (m/z) |
---|---|---|---|---|---|---|---|---|
1 | Noto R1 | C47H80O18 | 932.535 | + | + | 931.527 | 977.533 | 977[M+HCOO]−; 931[M−H]−; 799[M−H−Xyl]−; |
6375[M−H−Xyl−Glc]−; 4758[M−H−Xyl−GlcGlc]−; | ||||||||
293[XylGlc−H2O−H]−; 179[Glc−H]−; 1615[Glc−H2O−H]−; | ||||||||
β149[Xyl−H]−; 1311 [Xyl−H2O−H]−; 1,5A1α/2,5A1β101 | ||||||||
2 | Rg1 | C42H72O14 | 800.492 | + | + | 799.485 | 845.490 | 799[M−H]−; 637[M−H−Glc]−; 475[M−H−GlcGlc]−; |
391[M−H−GlcGlc−C6H12]−; B1α/B1β161; 2,5A1α/2,5A1β101 | ||||||||
3 | Re | C48H82O18 | 946.550 | + | + | 945.543 | 991.548 | 945[M−H]−; 783[M−H−Glc]−; 637[M−H−Glc−Rha]−; |
475[M−H−GlcGlc−Rha]− | ||||||||
4 | Rf | C42H72O14 | 800.492 | + | + | 799.485 | 845.490 | 799[M−H]−; 637[M−H−Glc]−; 475[M−H−GlcGlc]−; |
391M−H−GlcGlc−C6H12]−; 1,3A2β221; 2,5A1β101 | ||||||||
5 | Noto R2 | C41H70O13 | 770.482 | + | + | 769.474 | 793.471 | 769[M−H]−; 637[M−H−Xyl]−; 475[M−H−Xyl−Glc]−; |
391[M−H−Xyl−Glc−C6H12]− | ||||||||
6 | Ra1 | C58H98O26 | 1210.635 | + | + | 1209.627 | 1255.633 | 1209 [M−H]−; 1077[M−H−Xly]−; 945[M−H−Xly−Ara(p)]−; |
783[M−H−Xly−Ara(p)−Glc]−; 323[GlcGlc−H]−;2,4A2α191 | ||||||||
621[M−H−Xly−Ara(p)−GlcGlc]−; | ||||||||
459[M−H−Xly−Ara(p)−Glc GlcGlc]−; | ||||||||
7 | Ra2 | C58H98O26 | 1210.635 | + | + | 1209.627 | 1255.633 | 1209 [M−H]−; 1077[M−H−Xly]−; 945[M−H−Xly−Ara]−; |
783[M−H−Xly−Ara−Glc]−; 621[M−H−Xly−Ara−GlcGlc]−; | ||||||||
459[M−H−Xly−Ara−GlcGlcGlc]−; 323[GlcGlc−H]−; | ||||||||
2,4A2α191 | ||||||||
8 | Rb1 | C54H92O23 | 1108.603 | + | + | 1107.596 | 1153.601 | 1107[M−H]−; 945[M−H−Glc]−; 783[M−H−GlcGlc]−; |
621[M−H−GlcGlcGlc]−; 459[M−H−GlcGlcGlcGlc]−; | ||||||||
B2α/B2β323[GlcGlc−H]−; C1α/C1β179[Glc−H]− | ||||||||
9 | Rc | C53H90O22 | 1078.592 | + | + | 1077.585 | 1123.591 | 1077[M−H]−; 945[M−H−Ara(f)]−; 783[M−H−Ara−Glc]−; |
621M−H−Ara−Glc Glc]−; 459[M−H−Ara−GlcGlcGlc]− | ||||||||
10 | Rb2 | C53H90O22 | 1078.592 | + | + | 1077.585 | 1123.591 | 1077[M−H]−; 945[M−H−Ara(p)]−; 783[M−H−Ara−Glc]−; |
621[M−H−Ara−GlcGlc]−; B2α293[AraGlc−H]−; 0,4A2α191; | ||||||||
C1α149 [Ara−H]−; 2,5A1β101 | ||||||||
11 | Rb3 | C53H90O22 | 1078.592 | + | + | 1077.585 | 1123.591 | 1077[M−H]−; 945[M−H−Xyl]−; 83[M−H−Xyl−Glc]−; |
621[M−H−Xyl−GlcGlc]−; B2α293[XylGlc−H]−; | ||||||||
C1α149[Xyl−H]− | ||||||||
12 | Rd | C42H72O13 | 784.497 | + | + | 945.543 | 991.548 | 945[M−H]−; 783[M−H−Glc]−; 621[M−H−GlcGlc]−; |
459[M−H−GlcGlcGlc]−; B1α/B1β161[Glc−H]−; | ||||||||
2,5A1α/2,5A1β101 | ||||||||
13 | Rs1 | C55H92O23 | 1120.603 | + | + | 1119.596 | 1165.601 | 1119[M−H]−; 1077[M−H−Ac]−; 945[M−H−Ac−Xly]−; |
783[M−H−Ac−Xly−Glc]−; 621[M−H−Ac−Xly−GlcGlc]−; | ||||||||
459[M−H−Ac−Xly−GlcGlcGlc]−; 293[XylGlc−H]−; | ||||||||
C1α149[Xyl−H]− | ||||||||
14 | Rs2 | C55H92O23 | 1120.603 | + | + | 1119.596 | 1165.601 | 1119[M−H]−; 1077[M−H−Ac]−;945[M−H−Ac−Ara(f)]−; |
783[M−H−Ac−Ara(f)−Glc]−; C1α149[Ara(f)−H]−; | ||||||||
459[M−H−Ac−Ara(f)−GlcGlcGlc]−; 293[Ara(f)Glc−H]−; | ||||||||
621[M−H−Ac−Ara(f)−GlcGlc]− | ||||||||
15 | Rg3 | C42H72O13 | 784.497 | + | + | 783.490 | 829.495 | 871[M+HCOO]−; 783[M−H−Ac]−; 621[M−H−Ac−Glc]−; |
459[M−H−Ac−GlcGlc]−; B1β161[Glc−H]− | ||||||||
16 | Rg2 | C42H72O13 | 784.497 | + | - | 783.490 | 829.495 | 783[M−H]−; 637[M−H−Rha]−; 475[M−H−Rha−Glc]−; |
391[M−H−Rha−Glc−C6H12]− | ||||||||
17 | Rg5 | C42H70O12 | 766.487 | + | + | 765.480 | 811.484 | 811[M+HCOO]−; 765[M−H]−; 603[M−H−Glc]−; |
441[M−H−Glc−Glc]−; 1,3A2β221; B1β161[Glc−H2O−H]− | ||||||||
18 | Rg6 | C42H70O12 | 766.487 | + | + | 765.480 | 811.484 | 811[M+HCOO]−; 765[M−H]−; 619[M−H−Rha]−; |
457M−H−Rha−Glc]− | ||||||||
19 | Rk1 | C42H70O12 | 766.487 | + | + | 765.4795 | 977.533 | 765.4755 [M−H]−; 603[M−H−Glc]−; 441[M−H−GlcGlc]−; |
1,3A2β221; B1β161[Glc−H2O−H]− | ||||||||
20 | F4(Rg4) | C42H70O12 | 766.487 | + | + | 765.4795 | 811.484 | 765[M−H]−; 619[M−H−Rha]−; 457[M−H−Rha−Glc]−; |
1,5A2β279; 1,3A2β205; 0,2A1β101 |
No. | RT (min) | Compounds | Molecular Formula | Relative Contents (%) | CAS | |
---|---|---|---|---|---|---|
RG-CE | SGD-CE | |||||
1 | 5.746 | p-Xylene | C8H10 | 1.038 | 5.470 | 106-42-3 |
2 | 7.504 | Octanal | C8H16O | 0.121 | - | 124-13-0 |
3 | 7.782 | Octane, 3,3-dimethyl- | C10H22 | 0.149 | - | 4110-44-5 |
4 | 8.358 | Nonane, 4,5-dimethyl- | C11H24 | 0.327 | 1.016 | 17302-23-7 |
5 | 8.682 | Ethane, hexachloro- | C2Hl6 | 0.189 | - | 67-72-1 |
6 | 8.775 | Oxirane,[[(2-ethylhexyl)oxy]methyl]- | C11H22O2 | 0.065 | - | 2461-15-6 |
7 | 8.95 | 4-Nonenal,(E)- | C9H16O | 0.165 | - | 2277-16-9 |
8 | 9.102 | Nonanal | C9H18O | 0.265 | 0.949 | 124-19-6 |
9 | 9.238 | 2,3-Dimethyldecane | C12H26 | 0.091 | - | 17312-44-6 |
10 | 9.255 | Octane, 2,3,6,7-tetramethyl | C12H26 | - | 0.430 | 52670-34-5 |
11 | 9.539 | Benzenamine,2-ethyl- | C8H11N | 0.115 | - | 578-54-1 |
12 | 10.148 | 3-(1,3,5-Cycloheptatrien-7-yl)-2,4-pentanedione | C12H14O2 | 0.259 | - | 65548-56-3 |
13 | 10.43 | Naphthalene | C10H8 | 0.126 | 0.550 | 91-20-3 |
14 | 10.63 | 2-Methyltetracosane | C25H52 | 0.132 | - | 1560-78-7 |
15 | 10.642 | Decanal | C10H20O | - | 0.501 | 112-31-2 |
16 | 10.741 | Undecane, 2,5-dimethyl | C13H28 | 0.155 | - | 17301-22-3 |
17 | 10.867 | Benzaldehyde, 3,4-dimethyl | C9H10O | 0.281 | - | 5973-71-7 |
18 | 11.181 | Nonane, 3-methyl-5-propyl | C13H28 | 0.118 | 0.387 | 31081-18-2 |
19 | 11.343 | Caprolactam | C6H11NO | 1.150 | 6.122 | 105-60-2 |
20 | 11.466 | Decane, 3,6-dimethyl- | C12H26 | - | 0.833 | 17312-53-7 |
21 | 11.701 | Dodecane, 4,6-dimethyl | C14H30 | 0.504 | - | 61141-72-8 |
22 | 11.705 | Pentadecane | C15H32 | - | 1.555 | 629-62-9 |
23 | 11.82 | 3-(Hydroxy-phenylmethyl)-2,3-dimethyloctan-4-one | C17H26O2 | 0.232 | - | 1000192-68-2 |
24 | 11.962 | Tridecane | C13H28 | 0.090 | - | 629-50-5 |
25 | 12.081 | Carbonic acid, decylundecyl ester | C22H44O3 | 0.145 | - | 1000383-16-0 |
26 | 12.465 | Dodecane, 2,6,11-trimethyl | C15H32 | 0.092 | - | 31295-56-4 |
27 | 12.833 | 10-Methylnonadecane | C20H42 | 0.102 | - | 56862-62-5 |
28 | 13.313 | Niacinamide | C6H6N2O | 0.168 | - | 98-92-0 |
29 | 13.317 | Tetradecane | C14H30 | - | 0.570 | 629-59-4 |
30 | 13.402 | Vanillin | C8H8O3 | 0.486 | - | 121-33-5 |
31 | 13.999 | Carbonic acid, decyltridecyl ester | C24H48O3 | - | 0.535 | 1000383-16-2 |
32 | 14.12 | 2,6,10-Trimethyltridecane | C16H34 | 0.250 | - | 3891-99-4 |
33 | 14.206 | Dodecane, 2-methyl- | C13H28 | 0.126 | - | 1560-97-0 |
34 | 14.776 | 2,4-Di-tertbutylphenol | C14H22O | 1.578 | 3.713 | 96-76-4 |
35 | 14.855 | Butylated Hydroxytoluene | C15H24O | 0.134 | - | 128-37-0 |
36 | 14.995 | Tetradecane,4-methyl- | C15H32 | - | 0.393 | 25117-24-2 |
37 | 15.113 | Hexadecane, 2,6,11,15-tetramethyl | C20H42 | 0.261 | - | 504-44-9 |
38 | 15.115 | Heptadecane | C17H36 | - | 0.814 | 629-78-7 |
39 | 15.464 | Ditetradecyl ether | C28H58O | 0.097 | - | 5412-98-6 |
40 | 15.762 | Butyrovanillone | C11H14O3 | 0.982 | 0.546 | 64142-23-0 |
41 | 15.828 | Diethyl Phthalate | C12H14O4 | 0.170 | - | 84-66-2 |
42 | 17.19 | Parbenate | C11H15NO2 | - | 1.000 | 10287-53-3 |
43 | 17.384 | 1,4-Azulenediol,1,2,3,3a,4,5,6,8aoctahydro-1,4-dimethyl-7-(1-methylethyl)-,(1R,4S)- | C15H26O2 | 0.958 | - | 2117730-73-9 |
44 | 17.464 | (E)-4-(3-Hydroxyprop1-en-1-yl)-2-methoxyphenol | C10H12O3 | 1.252 | - | 32811-40-8 |
45 | 17.56 | Tetradecane, 2,6,10-trimethyl | C17H36 | - | 1.039 | 14905-56-7 |
46 | 17.656 | Panaxatriol | C30H52O4 | 0.600 | - | 32791-84-7 |
47 | 17.96 | (4S,8aR,9R,12S,12aR)-9,12-Dihydroxy-4-methyldodecahydro-2Hbenzo[d]oxecin-2-one | C14H24O4 | 0.324 | - | 1010482-41-6 |
48 | 18.027 | Octadecane | C18H38 | - | 0.907 | 593-45-3 |
49 | 18.119 | Incensole oxide, methyl ether | C21H36O3 | 0.299 | - | 1000513-23-2 |
50 | 18.255 | cis-Z-.alpha.-Bisabolene epoxide | C15H24O | 3.897 | - | 1000131-71-2 |
51 | 18.513 | Uvidin C | C15H26O3 | 0.313 | - | 74635-85-1 |
52 | 18.642 | 6-(2-Hydroxypropan-2-yl)-4,8a-dimethyl2,3,4,6,7,8-hexahydro1H-naphthalen-1-ol | C15H26O2 | 0.370 | - | 2061568-37-2 |
53 | 18.705 | E-8-Methyl-9- tetradecen-1-ol acetate | C17H32O2 | 0.249 | - | 1000130-81-4 |
54 | 18.838 | 2,4,7,14-Tetramethyl4-vinyltricyclo[5.4.3.0(1,8)] tetradecan-6-ol | C20H34O | 0.337 | - | 1000193-31-2 |
55 | 19.06 | Longifolenaldehyde | C15H24O | 0.722 | - | 19890-84-7 |
56 | 19.209 | 3,6-Dimethoxy1a,2,2a,3,6,6a,7,7aoctahydro-1-oxacyclopropa[b]naphth alene | C12H18O3 | 1.416 | 1.118 | 1010191-51-4 |
57 | 19.278 | 2,4-Dioxohexahydro1,3,5-triazine | C3H5N3O2 | 4.861 | - | 1000484-54-9 |
58 | 19.397 | 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | C17H24O3 | 0.394 | 1.472 | 82304-66-3 |
59 | 19.513 | Pyrrolo(1,2- a)pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- | C11H18N2O2 | 0.712 | - | 5654-86-4 |
60 | 19.669 | n-Hexadecanoic acid | C16H32O2 | 1.429 | - | 21096 |
61 | 20.443 | (S,Z)-Heptadeca-1,9- dien-4,6-diyn-3-ol | C17H24O | 7.028 | - | 81203-57-8 |
62 | 20.881 | 9-Octadecenenitrile | C18H33N | 1.012 | - | 112-91-4 |
63 | 20.997 | Heneicosane | C21H44 | - | 5.036 | 629-94-7 |
64 | 21.563 | Octadecanoic acid | C18H36O2 | 0.377 | - | 21128 |
65 | 21.798 | Panaxydol | C17H24O2 | 11.258 | - | 72800-72-7 |
66 | 21.993 | cis-13-Eicosenoic acid | C20H38O2 | 0.515 | - | 17735-94-3 |
67 | 22.248 | 1,3,5-Cycloheptatriene,7,7-dimethyl-2,4-diphenyl | C21H20 | 0.518 | - | 1000156-99-8 |
68 | 22.665 | Benzene,1,1’,1’’,1’’’-(1,2,3,4-cyclobutanetetrayl)tet rakis | C28H24 | 7.267 | - | 806-90-6 |
69 | 22.771 | Octadecane, 3-ethyl-5-(2-ethylbutyl)- | C26H54 | - | 9.909 | 55282-12-7 |
70 | 23.486 | Benzene, 1,1’,1’’-(1-propanyl-3-ylidene)tris | C21H20 | 8.459 | - | 19120-39-9 |
71 | 23.553 | 1,9-Diphenyl-1,3,5,7-nonatetraene | C21H20 | 9.967 | 9.320 | 1010326-78-2 |
72 | 23.774 | 14-Deoxy-11,14-didehydroandrographolide | C20H28O4 | 1.717 | - | 42895-58-9 |
73 | 23.91 | Phenol, 2,2’-methylenebis[6-(1,1-dimethylethyl)-4-methyl | C23H32O2 | 5.375 | 14.025 | 119-47-1 |
74 | 24.41 | Pentacosane | C25H52 | - | 11.245 | 629-99-2 |
75 | 24.415 | (Z)-Docos-9-enenitrile | C22H41N | 1.719 | - | 1000465-48-0 |
76 | 24.533 | Hexadecanoic acid, 1-(hydroxymethyl)-1,2-ethanediyl ester | C35H68O5 | - | 9.450 | 761-35-3 |
77 | 24.543 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | C19H38O4 | 2.860 | - | 23470-00-0 |
78 | 25.185 | Nonacosane | C29H60 | - | 11.097 | 630-03-5 |
79 | 26.241 | Octadecanoic acid, 2,3-dihydroxypropyl ester | C21H42O4 | 1.085 | - | 123-94-4 |
80 | 26.874 | 13-Docosenamide,(Z)- | C22H43NO | 0.836 | - | 112-84-5 |
81 | 27.407 | Squalene | C30H50 | 0.962 | - | 111-02-4 |
82 | 28.36 | Oxirane, 2,2’-[(1-methylethylidene)bis(4,1-phenyleneoxymethylene)]bis | C21H24O4 | 0.584 | - | 1675-54-3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.-E.; Chu, M.-Y.; Jiang, T.; Song, X.-H.; Hou, J.-F.; Cheng, L.-Y.; Feng, Y.; Chen, C.-B.; Wang, E.-P. By-Product of the Red Ginseng Manufacturing Process as Potential Material for Use as Cosmetics: Chemical Profiling and In Vitro Antioxidant and Whitening Activities. Molecules 2022, 27, 8202. https://doi.org/10.3390/molecules27238202
Zhang H-E, Chu M-Y, Jiang T, Song X-H, Hou J-F, Cheng L-Y, Feng Y, Chen C-B, Wang E-P. By-Product of the Red Ginseng Manufacturing Process as Potential Material for Use as Cosmetics: Chemical Profiling and In Vitro Antioxidant and Whitening Activities. Molecules. 2022; 27(23):8202. https://doi.org/10.3390/molecules27238202
Chicago/Turabian StyleZhang, Hui-E, Meng-Yao Chu, Tao Jiang, Xin-Hong Song, Jian-Feng Hou, Li-Ye Cheng, Ye Feng, Chang-Bao Chen, and En-Peng Wang. 2022. "By-Product of the Red Ginseng Manufacturing Process as Potential Material for Use as Cosmetics: Chemical Profiling and In Vitro Antioxidant and Whitening Activities" Molecules 27, no. 23: 8202. https://doi.org/10.3390/molecules27238202
APA StyleZhang, H. -E., Chu, M. -Y., Jiang, T., Song, X. -H., Hou, J. -F., Cheng, L. -Y., Feng, Y., Chen, C. -B., & Wang, E. -P. (2022). By-Product of the Red Ginseng Manufacturing Process as Potential Material for Use as Cosmetics: Chemical Profiling and In Vitro Antioxidant and Whitening Activities. Molecules, 27(23), 8202. https://doi.org/10.3390/molecules27238202