Structure Determination of Binuclear Triple-Decker Phthalocyaninato Complexes by NMR via Paramagnetic Shifts Analysis Using Symmetry Peculiarities
Abstract
:1. Introduction
2. Results and Discussion
Structural Assignment by NMR
3. Materials and Methods
3.1. Materials and Equipment
3.2. Paramagnetic NMR Shifts Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pushkarev, V.E.; Tomilova, L.G.; Nemykin, V.N. Historic Overview and New Developments in Synthetic Methods for Preparation of the Rare-Earth Tetrapyrrolic Complexes. Coord. Chem. Rev. 2016, 319, 110–179. [Google Scholar] [CrossRef] [Green Version]
- Koifman, O.I.; Ageeva, T.A.; Beletskaya, I.P.; Averin, A.D.; Yakushev, A.A.; Tomilova, L.G.; Dubinina, T.V.; Tsivadze, A.Y.; Gorbunova, Y.G.; Martynov, A.G.; et al. Macroheterocyclic Compounds-a Key Building Block in New Functional Materials and Molecular Devices. Macroheterocycles 2020, 13, 311–467. [Google Scholar] [CrossRef]
- Martynov, A.G.; Horii, Y.; Katoh, K.; Bian, Y.; Jiang, J.; Yamashita, M.; Gorbunova, Y.G. Rare-Earth Based Tetrapyrrolic Sandwiches: Chemistry, Materials and Applications. Chem. Soc. Rev. 2022, 51. [Google Scholar] [CrossRef] [PubMed]
- Bouvet, M.; Gaudillat, P.; Suisse, J.-M. Lanthanide Macrocyclic Complexes: From Molecules to Materials and from Materials to Devices. J. Porphyr. Phthalocyanines 2013, 17, 628–635. [Google Scholar] [CrossRef]
- Rodríguez-Méndez, M.L.; Gorbunova, Y.G.; de Saja, J.A. Spectroscopic Properties of Langmuir−Blodgett Films of Lanthanide Bis(Phthalocyanine)s Exposed to Volatile Organic Compounds. Sensing Applications. Langmuir 2002, 18, 9560–9565. [Google Scholar] [CrossRef]
- Martynov, A.G.; Safonova, E.A.; Tsivadze, A.Y.; Gorbunova, Y.G. Functional Molecular Switches Involving Tetrapyrrolic Macrocycles. Coord. Chem. Rev. 2019, 387, 325–347. [Google Scholar] [CrossRef]
- Lindsey, J.S.; Bocian, D.F. Molecules for Charge-Based Information Storage. Acc. Chem. Res. 2011, 44, 638–650. [Google Scholar] [CrossRef]
- Semenishyn, N.N.; Smola, S.S.; Rusakova, N.V.; Martynov, A.G.; Birin, K.P.; Gorbunova, Y.G. Infrared 4f-Luminescence of Erbium (III) Complexes with Tetrapyrrole Ligands. Macroheterocycles 2018, 11, 262–268. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.W.; Bian, Y.; Gao, S.; Jiang, J. Single-Molecule Magnetism of Tetrapyrrole Lanthanide Compounds with Sandwich Multiple-Decker Structures. Coord. Chem. Rev. 2016, 306, 195–216. [Google Scholar] [CrossRef]
- Zairov, R.R.; Yagodin, A.V.; Khrizanforov, M.; Martynov, A.G.; Nizameev, I.R.; Syakaev, V.V.; Gubaidullin, A.T.; Kornev, T.; Kaman, O.; Budnikova, Y.H.; et al. Unusual Magnetic Relaxation Behavior of Hydrophilic Colloids Based on Gadolinium(III) Octabutoxyphthalocyaninate. J. Nanoparticle Res. 2019, 21, 12. [Google Scholar] [CrossRef]
- Xiao, R.; Xu, X.Z.S. Temperature Sensation: From Molecular Thermosensors to Neural Circuits and Coding Principles. Annu. Rev. Physiol. 2021, 83, 205–230. [Google Scholar] [CrossRef] [PubMed]
- Feddersen, T.V.; Hernandez-Tamames, J.A.; Franckena, M.; van Rhoon, G.C.; Paulides, M.M. Clinical Performance and Future Potential of Magnetic Resonance Thermometry in Hyperthermia. Cancers 2020, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Panich, A.M.; Salti, M.; Prager, O.; Swissa, E.; Kulvelis, Y.V.; Yudina, E.B.; Aleksenskii, A.E.; Goren, S.D.; Vul’, A.Y.; Shames, A.I. PVP-coated Gd-grafted Nanodiamonds as a Novel and Potentially Safer Contrast Agent for in Vivo MRI. Magn. Reson. Med. 2021, 86, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Panich, A.M.; Salti, M.; Goren, S.D.; Yudina, E.B.; Aleksenskii, A.E.; Vul’, A.Y.; Shames, A.I. Gd(III)-Grafted Detonation Nanodiamonds for MRI Contrast Enhancement. J. Phys. Chem. C 2019, 123, 2627–2631. [Google Scholar] [CrossRef]
- Zapolotsky, E.N.; Qu, Y.; Babailov, S.P. Lanthanide Complexes with Polyaminopolycarboxylates as Prospective NMR/MRI Diagnostic Probes: Peculiarities of Molecular Structure, Dynamics and Paramagnetic Properties. J. Incl. Phenom. Macrocycl. Chem. 2021, 102, 1–33. [Google Scholar] [CrossRef]
- Ning, Y.; Zhu, M.; Zhang, J.-L. Near-Infrared (NIR) Lanthanide Molecular Probes for Bioimaging and Biosensing. Coord. Chem. Rev. 2019, 399, 213028. [Google Scholar] [CrossRef]
- Harnden, A.C.; Parker, D.; Rogers, N.J. Employing Paramagnetic Shift for Responsive MRI Probes. Coord. Chem. Rev. 2019, 383, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Gorbunova, Y.G.; Martynov, A.G.; Birin, K.P.; Tsivadze, A.Y. NMR Spectroscopy—A Versatile Tool for Studying the Structure and Magnetic Properties of Paramagnetic Lanthanide Complexes in Solutions (Review). Russ. J. Inorg. Chem. 2021, 66, 202–216. [Google Scholar] [CrossRef]
- Gamov, G.A.; Zavalishin, M.N.; Pimenov, O.A.; Klochkov, V.V.; Khodov, I.A. La(III), Ce(III), Gd(III), and Eu(III) Complexation with Tris(Hydroxymethyl)Aminomethane in Aqueous Solution. Inorg. Chem. 2020, 59, 17783–17793. [Google Scholar] [CrossRef]
- Herath, I.D.; Breen, C.; Hewitt, S.H.; Berki, T.R.; Kassir, A.F.; Dodson, C.; Judd, M.; Jabar, S.; Cox, N.; Otting, G.; et al. A Chiral Lanthanide Tag for Stable and Rigid Attachment to Single Cysteine Residues in Proteins for NMR, EPR and Time-Resolved Luminescence Studies. Chem. A Eur. J. 2021, 27, 13009–13023. [Google Scholar] [CrossRef]
- Babailov, S.P.; Krieger, J.H. NMR Applications for a Study of Converted Photochemical Processes Kinetics. Appl. Magn. Reson. 2002, 22, 589–595. [Google Scholar] [CrossRef]
- Babailov, S.P.; Krieger, Y.G. NMR Methods for Molecular Structure Studies of Paramagnetic Lanthanide Complexes in Solutions. Applications to Crown Ether Complexes. J. Struct. Chem. 1998, 39, 580–593. [Google Scholar] [CrossRef]
- Babailov, S.P.; Kokovkin, V.V.; Stabnikov, P.A. Paramagnetic Properties and Complexation Kinetics of Edta With Praseodymium and Holmium(III) Cations in Aqueous Solution. J. Struct. Chem. 2010, 51, 682–686. [Google Scholar] [CrossRef]
- Hiller, M.; Sittel, T.; Wadepohl, H.; Enders, M. A New Class of Lanthanide Complexes with Three Ligand Centered Radicals: NMR Evaluation of Ligand Field Energy Splitting and Magnetic Coupling. Chem. A Eur. J. 2019, 25, 10668–10677. [Google Scholar] [CrossRef] [PubMed]
- Piguet, C.; Geraldes, C.F.G.C. Paramagnetic NMR Lanthanide Induced Shifts for Extracting Solution Structures. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 2003; Volume 33, pp. 353–463. [Google Scholar]
- Babailov, S.P.; Mainichev, D.A.; Nikulina, L.D.; Petrova, S.S. Intramolecular Dynamics and Molecular Structure of Europium(III) Chelate Complexes with Crown Ethers as Studied by NMR Spectroscopy. J. Incl. Phenom. Macrocycl. Chem. 2005, 51, 73–78. [Google Scholar] [CrossRef]
- Babailov, S.P. Lanthanides as NMR/MRI Temperature Sensors and Probes of Moderately Fast Molecular Dynamics in Aqueous Medium: A Dependence of Activation Energy of Racemization in Complexes of Diethylenetriaminepentaacetat on Lanthanide Ion. Sens. Actuators B Chem. 2017, 251, 108–111. [Google Scholar] [CrossRef]
- Kemple, M.D.; Ray, B.D.; Lipkowitz, K.B.; Prendergast, F.G.; Rao, B.D.N. The Use of Lanthanides for Solution Structure Determination of Biomolecules by NMR. Evaluation of the Methodology with EDTA Derivatives as Model Systems. J. Am. Chem. Soc. 1988, 110, 8275–8287. [Google Scholar] [CrossRef]
- Nadaud, P.S.; Helmus, J.J.; Kall, S.L.; Jaroniec, C.P. Paramagnetic Ions Enable Tuning of Nuclear Relaxation Rates and Provide Long-Range Structural Restraints in Solid-State NMR of Proteins. J. Am. Chem. Soc. 2009, 131, 8108–8120. [Google Scholar] [CrossRef]
- Senanayake, P.K.; Rogers, N.J.; Finney, K.L.N.A.; Harvey, P.; Funk, A.M.; Wilson, J.I.; O’Hogain, D.; Maxwell, R.; Parker, D.; Blamire, A.M. A New Paramagnetically Shifted Imaging Probe for MRI. Magn. Reson. Med. 2017, 77, 1307–1317. [Google Scholar] [CrossRef] [Green Version]
- Babailov, S.P. Intermolecular Dynamics and Paramagnetic Properties of Ethylenediaminetetraacetate Complexes with the Yttrium Subgroup Rare Earth Elements Using Nuclear Magnetic Resonance. Magn. Reson. Chem. 2012, 50, 793–797. [Google Scholar] [CrossRef]
- Selyutina, O.Y.; Babailov, S.P. Holmium Complex with Phospholipids as 1H NMR Relaxational Sensor of Temperature and Viscosity. Molecules 2022, 27, 6691. [Google Scholar] [CrossRef] [PubMed]
- Babailov, S.P.; Zapolotsky, E.N.; Fomin, E.S. Molecular Structure and Paramagnetic Properties of Bis -Diisobutyl- Dithiophosphinate Complexes of Neodymium (III), Europium (III) and Ytterbium (III) with 1, 10-Phenanthroline Using NMR. Polyhedron 2013, 65, 332–336. [Google Scholar] [CrossRef]
- Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. J. Am. Chem. Soc. 2003, 125, 8694–8695. [Google Scholar] [CrossRef] [PubMed]
- Damjanovic, M.; Katoh, K.; Yamashita, M.; Enders, M. Combined NMR Analysis of Huge Residual Dipolar Couplings and Pseudocontact Shifts in Terbium(III)-Phthalocyaninato Single Molecule Magnets. J. Am. Chem. Soc. 2013, 135, 14349–14358. [Google Scholar] [CrossRef]
- Martynov, A.G.; Gorbunova, Y.G.; Tsivadze, A.Y. Novel Approaches to Model-Free Analysis of Lanthanide-Induced Shifts, Targeted to the Investigation of Contact Term Behavior. Dalt. Trans. 2011, 40, 7165–7171. [Google Scholar] [CrossRef]
- Martynov, A.G.; Gorbunova, Y.G. 1H NMR Spectral Analysis in Series of Heteroleptic Triple-Decker Lanthanide Phthalocyaninato Complexes: Contact and Dipolar Contributions of Lanthanide-Induced Shifts. Polyhedron 2010, 29, 391–399. [Google Scholar] [CrossRef]
- Polovkova, M.A.; Martynov, A.G.; Birin, K.P.; Nefedov, S.E.; Gorbunova, Y.G.; Tsivadze, A.Y. Determination of the Structural Parameters of Heteronuclear (Phthalocyaninato)Bis(Crownphthalocyaninato)Lanthanide(III) Triple-Deckers in Solution by Simultaneous Analysis of NMR and Single-Crystal X-Ray Data. Inorg. Chem. 2016, 55, 9258–9269. [Google Scholar] [CrossRef]
- Martynov, A.G.; Polovkova, M.A.; Berezhnoy, G.S.; Sinelshchikova, A.A.; Dolgushin, F.M.; Birin, K.P.; Kirakosyan, G.A.; Gorbunova, Y.G.; Tsivadze, A.Y. Cation-Induced Dimerization of Heteroleptic Crown-Substituted Trisphthalocyaninates as Revealed by X-Ray Diffraction and NMR Spectroscopy. Inorg. Chem. 2020, 59, 9424–9433. [Google Scholar] [CrossRef]
- Babailov, S.P.; Polovkova, M.A.; Kirakosyan, G.A.; Martynov, A.G.; Zapolotsky, E.N.; Gorbunova, Y.G. NMR Thermosensing Properties on Binuclear Triple-Decker Complexes of Terbium(III) and Dysprosium(III) with 15-Crown-5-Phthalocyanine. Sens. Actuators A Phys. 2021, 331, 112933. [Google Scholar] [CrossRef]
- Tsuchiya, S.; Fuyuhiro, A.; Fukuda, T.; Ishikawa, N. Magnetic Anisotropy and Interaction between F-Electronic Systems in Dinuclear Inverted-Sandwich-Type Lanthanide-Phthalocyanine Complexes. J. Porphyr. Phthalocyanines 2014, 18, 933–936. [Google Scholar] [CrossRef]
- De Boer, J.W.M.; Sakkers, P.J.D.; Hilbers, C.W.; De Boer, E. Lanthanide Shift Reagents. II. Shift Mechanisms. J. Magn. Reson. 1977, 25, 455–476. [Google Scholar] [CrossRef]
- Koehler, J.; Meiler, J. Expanding the Utility of NMR Restraints with Paramagnetic Compounds: Background and Practical Aspects. Prog. Nucl. Magn. Reson. Spectrosc. 2011, 59, 360–389. [Google Scholar] [CrossRef] [PubMed]
- Troyanov, C.I.; Lapkina, L.A.; Larchenko, V.E.; Tsivadze, A.Y. Crystal Structure of tristetra(15-CROWN-5)phthalocyaninatodilutetium(III). Dokl. Chem. 1999, 367, 192–196. [Google Scholar]
Assignment | Tb | Dy | ||||||
---|---|---|---|---|---|---|---|---|
δLIS(exp) | δLIS(calc) | ΔδLIS (Ln1) | ΔδLIS (Ln2) | δLIS(calc) | δLIS(exp) | ΔδLIS (Ln1) | ΔδLIS (Ln2) | |
HPco | −57.6 | −56.6 | −71.4 | 14.8 | −29.2 | −29.7 | −36.8 | 7.6 |
1o | −37.9 | −35.4 | −32.6 | −2.79 | −18.1 | −19.4 | −16.8 | −1.4 |
1′o | −25.0 | −25.4 | −28.8 | 3.4 | −13.1 | −12.9 | −14.9 | 1.8 |
2o | −21.9 | −23.2 | −18.7 | −4.5 | −12.0 | −11.4 | −9.6 | −2.3 |
2′o | −20.3 | −18.2 | −15.7 | −2.5 | −9.4 | −10.4 | −8.1 | −1.3 |
3o | −12.6 | −14.0 | −10.1 | −3.8 | −7.1 | −6.4 | −5.1 | −1.9 |
3′o | −10.4 | −16.3 | −11.9 | −4.3 | −8.4 | −5.3 | −6.1 | −2.2 |
4o | −9.0 | −10.5 | −8.9 | −1.6 | −5.3 | −4.5 | −4.5 | −0.8 |
4′o | −7.6 | −13.4 | −11.3 | −2.1 | −6.9 | −3.8 | −5.8 | −1.0 |
HPci | −154.3 | −153.6 | −150.2 | −3.4 | −79.0 | −79.3 | −78.9 | −0.2 |
1i | −69.5 | −67.7 | −55.4 | −12.3 | −34.8 | −35.9 | −28.9 | −5.9 |
2i | −35.1 | −37.6 | −28.1 | −9.5 | −19.4 | −18.2 | −14.7 | −4.7 |
3i | −16.9 | −15.1 | −13.2 | −1.9 | −7.5 | −8.5 | −6.8 | −0.8 |
4i | −14.0 | −19.0 | −14.8 | −4.2 | −9.7 | −7.1 | −7.7 | −2.0 |
Sqrt(AF) | 0.06 | 0.06 |
Ln | |||||
---|---|---|---|---|---|
Tb | −89,395 | 23,001 | −29,816 | −70,807 | −66,432 |
Dy | −45,992 | 11,872 | −16,379 | −38,628 | −34,892 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babailov, S.P.; Zapolotsky, E.N.; Fomin, E.S.; Polovkova, M.A.; Kirakosyan, G.A.; Martynov, A.G.; Gorbunova, Y.G. Structure Determination of Binuclear Triple-Decker Phthalocyaninato Complexes by NMR via Paramagnetic Shifts Analysis Using Symmetry Peculiarities. Molecules 2022, 27, 7836. https://doi.org/10.3390/molecules27227836
Babailov SP, Zapolotsky EN, Fomin ES, Polovkova MA, Kirakosyan GA, Martynov AG, Gorbunova YG. Structure Determination of Binuclear Triple-Decker Phthalocyaninato Complexes by NMR via Paramagnetic Shifts Analysis Using Symmetry Peculiarities. Molecules. 2022; 27(22):7836. https://doi.org/10.3390/molecules27227836
Chicago/Turabian StyleBabailov, Sergey P., Eugeny N. Zapolotsky, Eduard S. Fomin, Marina A. Polovkova, Gayane A. Kirakosyan, Alexander G. Martynov, and Yulia G. Gorbunova. 2022. "Structure Determination of Binuclear Triple-Decker Phthalocyaninato Complexes by NMR via Paramagnetic Shifts Analysis Using Symmetry Peculiarities" Molecules 27, no. 22: 7836. https://doi.org/10.3390/molecules27227836
APA StyleBabailov, S. P., Zapolotsky, E. N., Fomin, E. S., Polovkova, M. A., Kirakosyan, G. A., Martynov, A. G., & Gorbunova, Y. G. (2022). Structure Determination of Binuclear Triple-Decker Phthalocyaninato Complexes by NMR via Paramagnetic Shifts Analysis Using Symmetry Peculiarities. Molecules, 27(22), 7836. https://doi.org/10.3390/molecules27227836