Preparation, In Vitro and In Vivo Evaluation of Nanoemulsion In Situ Gel for Transnasal Delivery of Traditional Chinese Medicine Volatile Oil from Ligusticum sinense Oliv.cv. Chaxiong
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of Nanoemulsion Formulations
2.1.1. Screening of Cosurfactant
2.1.2. Screening of Surfactant
2.1.3. Pseudo-Ternary Phase Diagram
2.1.4. Optimization of VOC-Nanoemulsion
2.2. Characterization of VOC-NE
2.2.1. Traits and Types
2.2.2. Particle Size, PDI and Zeta Potential
2.2.3. pH, Viscosity, Refractive Index and Transmittance
2.2.4. Result of TEM
2.2.5. Result of Stability Studies
2.3. Screening of VOC-NE-ISG Gel Framework Materials
2.3.1. The Effect of P407 on the Gelling Temperature of In Situ Gels
2.3.2. The Effect of P188 on the Gelling Temperature of In Situ Gels
2.3.3. Screening Prescription Ratio of VOC-NE-ISG
2.4. In Vitro Evaluation of VOC-NE-ISG
2.4.1. Measurement of pH and Viscosity of the Gel
2.4.2. Measurement of Gelation Temperature and Gelation Time
2.4.3. Determination of Gel Strength
2.4.4. Determination of Bioadhesion
2.4.5. Determination of Expansion Coefficient and Gel Water Retention Capacity
2.4.6. Rheological Studies
2.4.7. In Vitro Release Studies
2.4.8. Histological Evaluation of Nasal Mucosa
2.5. Results of Pharmacokinetic Study
2.6. Results of Brain Tissue Distribution Studies
2.7. Results of Pharmacodynamic Study
2.7.1. Results of Neurological Deficit Score
2.7.2. TTC Staining
3. Materials and Methods
3.1. Materials
3.2. Animals
3.3. Preparation of Chaxiong Volatile Oil
3.4. HPLC Analysis of VOC
3.5. Screening of Nanoemulsion Formulations
3.5.1. Screening of Oil Phase
3.5.2. Screening of Cosurfactant
3.5.3. Screening of Surfactant
3.5.4. Pseudo-Ternary Phase Diagrams Construction
3.5.5. Optimization of VOC-Nanoemulsion
3.5.6. Preparation of Volatile Oil of Chaxiong Nanoemulsion
3.6. In Vitro Evaluation of Volatile Oil of Chaxiong Nanoemulsion
3.6.1. Traits and Types
3.6.2. Particle Size, Polydispersity Index and Zeta Potential
3.6.3. pH, Viscosity, Refractive Index and Transmittance
3.6.4. Transmission Electron Microscopy (TEM)
3.6.5. Stability Studies
3.7. Screening of VOC-NE-ISG Gel Framework Materials
3.7.1. The Effect of P407 on the Gelling Temperature of In Situ Gels
3.7.2. The Effect of P188 on the Gelation Temperature of In Situ Gels
3.7.3. Screening Prescription Ratio of VOC-NE-ISG
3.7.4. Preparation of VOC-NE-ISG
3.8. In Vitro Evaluation of VOC-NE-ISG
3.8.1. Measurement of pH and Viscosity of the Gel
3.8.2. Measurement of Gelation Temperature and Gelation Time
3.8.3. Measurement of Gel Strength
3.8.4. Measurement of Bioadhesion
3.8.5. Measurement of Expansion Coefficient and Gel Water Retention Capacity
3.8.6. Measurement of Rheological Properties
3.8.7. Measurement of Percent Drug Content
3.8.8. Measurement of In Vitro Release Studies
3.8.9. Histological Evaluation of Nasal Mucosa
3.9. Pharmacokinetic Studies
3.9.1. Animal Studies
3.9.2. Blood Sample Analysis
3.9.3. UPLC-MS/MS Method
3.10. In Vivo Brain Targeting Studies
3.10.1. Animal Studies
3.10.2. Analytical Procedures
3.11. Pharmacodynamic Studies
3.11.1. Establishment of a Rat Model of Middle Cerebral Artery Occlusion
3.11.2. Grouping and Administration
3.11.3. Neurological Deficit Score
3.11.4. Infarct Volume Evaluation
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sakalauskaite-Juodeikiene, E.; Jatuzis, D. Descriptions of Apoplexy by Joseph Frank in the Beginning of the Nineteenth Century in Vilnius. Eur. Neurol. 2017, 78, 8–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, C.; Arai, K.; Lo, E.H.; Hommel, M. Pathophysiologic Cascades in Ischemic Stroke. Int. J. Stroke 2012, 7, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Kou, L.; Liang, L.; Tang, C.J.B.R. MiR-375 attenuates injury of cerebral ischemia/reperfusion via targeting Ctgf. Biosci. Rep. 2017, 37, BSR20171242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Wang, A.; Ma, S.; Cheng, X.; Wei, F. Chemical Constituents from the Aerial Parts of Ligusticum sinense. J. Chin. Med. Mater. 2018, 41, 2339–2342. [Google Scholar]
- Luo Yongming, P.J. GC-MS analysis of volatile oil components in Ligusticum sinense Oliv cv. Chaxiong. J. Chin. Med. Mater. 1996, 6, 302–303. [Google Scholar]
- Wei, H. Advances in the chemical constituents and pharmacological effects of Ligusticum sinense Oliv cv. Chaxiong. China Med. Her. 2017, 14, 45–48. [Google Scholar]
- Monteiro, L.M.; Lione, V.F.; do Carmo, F.A.; do Amaral, L.H.; da Silva, J.H.; Nasciutti, L.E.; Rodrigues, C.R.; Castro, H.C.; de Sousa, V.P.; Cabral, L.M. Development and characterization of a new oral dapsone nanoemulsion system: Permeability and in silico bioavailability studies. Int. J. Nanomed. 2012, 7, 5175–5182. [Google Scholar]
- Ruenraroengsak, P.; Cook, J.M.; Florence, A.T. Nanosystem drug targeting: Facing up to complex realities. J. Control. Release 2010, 141, 265–276. [Google Scholar] [CrossRef]
- Chang, Y.; McLandsborough, L.; McClements, D.J. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (lauric arginate). Food Chem. 2015, 172, 298–304. [Google Scholar] [CrossRef]
- Elshafeey, A.H.; Kamel, A.O.; Fathallah, M.M. Utility of Nanosized Microemulsion for Transdermal Delivery of Tolterodine Tartrate: Ex-Vivo Permeation and In-Vivo Pharmacokinetic Studies. Pharm. Res. 2009, 26, 2446–2453. [Google Scholar] [CrossRef]
- De Oca-Ávalos, J.M.M.; Candal, R.J.; Herrera, M.L. Nanoemulsions: Stability and physical properties. Curr. Opin. Food Sci. 2017, 16, 1–6. [Google Scholar] [CrossRef]
- Abdou, E.M.; Kandil, S.M.; Miniawy, H.M.F.E. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int. J. Pharm. 2017, 529, 667–677. [Google Scholar] [CrossRef]
- Komaiko, J.S.; McClements, D.J. Formation of Food-Grade Nanoemulsions Using Low-Energy Preparation Methods: A Review of Available Methods. Compr. Rev. Food Sci. Food Saf. 2016, 15, 331–352. [Google Scholar] [CrossRef]
- Jintapattanakit, A.; Hasan, H.M.; Junyaprasert, V.B. Vegetable oil-based nanoemulsions containing curcuminoids: Formation optimization by phase inversion temperature method. J. Drug Deliv. Sci. Technol. 2018, 44, 289–297. [Google Scholar] [CrossRef]
- Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release 2018, 270, 203–225. [Google Scholar] [CrossRef]
- Din, F.U.; Choi, J.Y.; Kim, D.W.; Mustapha, O.; Kim, D.S.; Thapa, R.K.; Ku, S.K.; Youn, Y.S.; Oh, K.T.; Yong, C.S.; et al. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv. 2017, 24, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, L.; Xie, H.; Wang, Y.; Gao, S.; Zhang, L.; Bo, F.; Yang, S.; Feng, A. Primary Studies on Construction and Evaluation of Ion-Sensitive in situ Gel Loaded with Paeonol-Solid Lipid Nanoparticles for Intranasal Drug Delivery. Int. J. Nanomed. 2020, 15, 3137–3160. [Google Scholar] [CrossRef]
- Salem, H.F.; Kharshoum, R.M.; Abou-Taleb, H.A.; Naguib, D.M. Nanosized Transferosome-Based Intranasal in Situ Gel for Brain Targeting of Resveratrol: Formulation, Optimization, In Vitro Evaluation, and In Vivo Pharmacokinetic Study. AAPS PharmSciTech 2019, 20, 181. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Lohan, S.; Murthy, R.S.R. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev. Ind. Pharm. 2014, 40, 869–878. [Google Scholar] [CrossRef]
- Srivastava, M.; Kohli, K.; Ali, M. Formulation development of novel in situ nanoemulgel (NEG) of ketoprofen for the treatment of periodontitis. Drug Deliv. 2016, 23, 154–166. [Google Scholar] [CrossRef]
- Christoph, K.; Felix, F.; Michael, K. Animal models of ischemic stroke and their application in clinical research. Drug Des. Dev. Ther. 2015, 9, 3445–3454. [Google Scholar]
- Hu, P.-Y.; Zhong, Y.-H.; Feng, J.-F.; Li, D.-X.; Deng, P.; Zhang, W.-L.; Lei, Z.-Q.; Liu, X.-M.; Zhang, G.-S. Pharmacokinetics of five phthalides in volatile oil of Ligusticum sinense Oliv.cv. Chaxiong, and comparison study on physicochemistry and pharmacokinetics after being formulated into solid dispersion and inclusion compound. BMC Complement. Med. Ther. 2021, 21, 129. [Google Scholar] [CrossRef] [PubMed]
- Dhobale, A.V. Formulation and evaluation of carbamazepine nanoemulsion for brain targeted drug delivery via intranasal route. Indo Am. J. Pharm. Res. 2018, 8, 7. [Google Scholar]
- Fernandez, P.; André, V.; Rieger, J.; Kühnle, A. Nano-emulsion formation by emulsion phase inversion. Colloids Surf. A Physicochem. Eng. Asp. 2004, 251, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Ševčíková, P.; Kašpárková, V.; Vltavská, P.; Krejčí, J. On the preparation and characterization of nanoemulsions produced by phase inversion emulsification. Colloids Surf. A Physicochem. Eng. Asp. 2012, 410, 130–135. [Google Scholar] [CrossRef]
- Jafarieh, O.; Md, S.; Ali, M.; Baboota, S.; Sahni, J.K.; Kumari, B.; Bhatnagar, A.; Ali, J. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev. Ind. Pharm. 2015, 41, 1674–1681. [Google Scholar] [CrossRef]
- Chuesiang, P.; Siripatrawan, U.; Sanguandeekul, R.; McLandsborough, L.; Julian McClements, D. Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration. J. Colloid Interface Sci. 2018, 514, 208–216. [Google Scholar] [CrossRef]
- Hosny, K.M.; Banjar, Z.M. The formulation of a nasal nanoemulsion zaleplon in situ gel for the treatment of insomnia. Expert Opin. Drug Deliv. 2013, 10, 1033–1041. [Google Scholar] [CrossRef]
- Najafi-Taher, R.; Ghaemi, B.; Amani, A. Delivery of adapalene using a novel topical gel based on tea tree oil nano-emulsion: Permeation, antibacterial and safety assessments. Eur. J. Pharm. Sci. 2018, 120, 142–151. [Google Scholar] [CrossRef]
- Mohamed, S.; Nasr, M.; Salama, A.; Refai, H. Novel lipid-polymer hybrid nanoparticles incorporated in thermosensitive in situ gel for intranasal delivery of terbutaline sulphate. J. Microencapsul. 2020, 37, 577–594. [Google Scholar] [CrossRef]
- Youssef, N.A.H.A.; Kassem, A.A.; Farid, R.M.; Ismail, F.A.; El-Massik, M.A.E.; Boraie, N.A. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation. Int. J. Pharm. 2018, 548, 609–624. [Google Scholar] [CrossRef]
- Uttarwar, S. Formulation and Development of In Situ Gelling System for Nasal Administration for an Antiemetic Drug Ondansetron Hydrochloride by Using Pluronics 127P and Pluronics 68. Int. J. Res. Pharm. Biomed. Sci. 2012, 3, 1103–1108. [Google Scholar]
- Galgatte, U.C.; Kumbhar, A.B.; Chaudhari, P.D. Development of in situ gel for nasal delivery: Design, optimization, in vitro and in vivo evaluation. Drug Deliv. 2014, 21, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Nizic, L.; Ugrina, I.; Spoljaric, D.; Sarson, V.; Kucuk, M.S.; Pepic, I.; Hafner, A. Innovative sprayable in situ gelling fluticasone suspension: Development and optimization of nasal deposition. Int. J. Pharm. 2019, 563, 445–456. [Google Scholar] [CrossRef]
- Hosny, K.M.; Hassan, A.H. Intranasal in situ gel loaded with saquinavir mesylate nanosized microemulsion: Preparation, characterization, and in vivo evaluation. Int. J. Pharm. 2014, 475, 191–197. [Google Scholar] [CrossRef]
- Pham, C.V.; Van, M.C.; Thi, H.P.; Thanh, C.Đ.; Ngoc, B.T.; Van, B.N.; le Thien, G.; Van, B.N.; Nguyen, C.N. Development of ibuprofen-loaded solid lipid nanoparticle-based hydrogels for enhanced in vitro dermal permeation and in vivo topical anti-inflammatory activity—ScienceDirect. J. Drug Deliv. Sci. Technol. 2020, 57, 101758. [Google Scholar] [CrossRef]
- Boche, M.; Pokharkar, V. Quetiapine Nanoemulsion for Intranasal Drug Delivery: Evaluation of Brain-Targeting Efficiency. AAPS PharmSciTech 2017, 18, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Longa, E.Z.; Weinstein, P.R.; Carlson, S.; Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989, 20, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Guo, Z.F.; Xu, Y.M.; Li, Y.S.; Song, J.G. N-Butylphthalide (NBP) ameliorated cerebral ischemia reperfusion-induced brain injury via HGF-regulated TLR4/NF-kappaB signaling pathway. Biomed. Pharmacother. 2016, 83, 658–666. [Google Scholar] [CrossRef]
Run | Coded Value | Actual Value | Response Values | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | A/% | B/% | C/h | Size/nm | PDI | ZP/mV | |
1 | 1 | 0 | −1 | 16 | 25 | 0.5 | 70.16 ± 0.88 | 0.49 ± 0.01 | −11.40 ± 1.30 |
2 | 0 | −1 | 1 | 10 | 20 | 1.5 | 33.46 ± 0.35 | 0.37 ± 0.00 | −14.20 ± 1.75 |
3 | 0 | 0 | 0 | 10 | 25 | 1.0 | 29.83 ± 0.35 | 0.34 ± 0.04 | −21.77 ± 1.25 |
4 | 0 | 1 | −1 | 10 | 30 | 0.5 | 81.40 ± 0.66 | 0.57 ± 0.04 | −12.30 ± 0.60 |
5 | 1 | 0 | 1 | 16 | 25 | 1.5 | 84.95 ± 1.34 | 0.58 ± 0.02 | −14.30 ± 1.00 |
6 | −1 | 0 | 1 | 4 | 25 | 1.5 | 18.02 ± 1.15 | 0.27 ± 0.02 | −12.70 ± 1.82 |
7 | 0 | 0 | 0 | 10 | 25 | 1.0 | 24.04 ± 0.92 | 0.27 ± 0.01 | −21.17 ± 0.80 |
8 | 0 | 0 | 0 | 10 | 25 | 1.0 | 31.28 ± 1.04 | 0.44 ± 0.03 | −21.95 ± 2.79 |
9 | 0 | 0 | 0 | 10 | 25 | 1.0 | 40.47 ± 0.98 | 0.25 ± 0.03 | −22.33 ± 1.19 |
10 | 0 | −1 | −1 | 10 | 20 | 0.5 | 92.63 ± 0.13 | 0.69 ± 0.00 | −15.90 ± 0.44 |
11 | 1 | 1 | 0 | 16 | 30 | 1.0 | 51.37 ± 0.61 | 0.17 ± 0.01 | −14.70 ± 1.79 |
12 | 0 | 0 | 0 | 10 | 25 | 1.0 | 26.98 ± 1.56 | 0.26 ± 0.04 | −22.3 ± 0.57 |
13 | −1 | 1 | 0 | 4 | 30 | 1.0 | 43.72 ± 0.32 | 0.14 ± 0.01 | −13.80 ± 1.15 |
14 | 0 | 1 | 1 | 10 | 30 | 1.5 | 60.81 ± 0.94 | 0.35 ± 0.03 | −14.59 ± 1.23 |
15 | 1 | −1 | 0 | 16 | 20 | 1.0 | 82.74 ± 0.13 | 0.41 ± 0.00 | 13.73 ± 1.15 |
16 | −1 | 0 | −1 | 4 | 25 | 0.5 | 43.46 ± 0.39 | 0.20 ± 0.01 | −14.10 ± 2.23 |
17 | −1 | −1 | 0 | 4 | 20 | 1.0 | 19.49 ± 1.14 | 0.25 ± 0.01 | −18.50 ± 0.85 |
Active Ingredients | Group | Cmax/μg/L | Tmax/h | t1/2/h | MRT (0–t)/h | AUC (0–t)/ μg/L·h | F/% |
---|---|---|---|---|---|---|---|
SA | I.V. | 1976.25 ± 1043.97 | - | 1.63 ± 0.43 | 1.15 ± 0.24 | 1191.45 ± 470.03 | - |
I.P. | 245.40 ± 98.34 * | 0.21 ± 0.07 | 1.75 ± 0.55 | 1.75 ± 0.15 * | 409.66 ± 56.36 * | 17.19 | |
Solution | 321.00 ± 21.68 * | 0.30 ± 0.11 | 1.77 ± 0.18 | 1.59 ± 0.25 | 284.05 ± 32.17 * | 26.91 | |
NE | 349.17 ± 53.24 * | 0.40 ± 0.54 | 2.17 ± 0.38 | 1.92 ± 0.40 * | 334.52 ± 88.13 * | 31.94 | |
NE-ISG | 404.50 ± 53.93 * | 0.30 ± 0.11 | 5.72 ± 1.84 | 1.96 ± 0.13 * | 247.34 ± 58.91 * | 42.16 | |
NOL | I.V. | 1068.80 ± 665.27 | - | 1.55 ± 0.22 | 1.21 ± 0.16 | 477.08 ± 142.35 | - |
I.P. | 103.19 ± 33.56 * | 0.29 ± 0.10 | 1.93 ± 0.28 | 1.95 ± 0.33 | 183.11 ± 47.39 * | 19.19 | |
Solution | 132.03 ± 20.05 * | 0.40 ± 0.13 | 2.51 ± 0.27 # | 1.73 ± 0.18 | 107.92 ± 18.82 * | 25.53 | |
NE | 114.33 ± 18.97 * | 0.50 ± 0.31 * | 2.09 ± 0.66 | 1.70 ± 0.54 | 119.43 ± 39.78 * | 30.62 | |
NE-ISG | 141.83 ± 45.91 * | 0.33 ± 0.20 | 3.14 ± 0.85 # | 2.17 ± 0.25 | 90.08 ± 34.35 * | 40.69 | |
NBP | I.V. | 97.46 ± 77.23 | - | 1.58 ± 0.57 | 1.37 ± 0.69 # | 115.65 ± 50.75 | - |
I.P. | 19.34 ± 8.09 * | 0.25 ± 0.16 * | 1.88 ± 0.47 | 2.39 ± 0.21 * | 42.38 ± 13.92 * | 18.32 | |
Solution | 30.43 ± 6.38 * | 0.30 ± 0.11 | 1.65 ± 0.48 | 1.75 ± 0.27 # | 26.77 ± 17.75 * | 26.13 | |
NE | 24.00 ± 6.58 * | 0.50 ± 0.27 * | 2.74 ± 0.77 | 2.06 ± 0.85 # | 22.59 ± 6.55 * | 25.90 | |
NE-ISG | 19.54 ± 2.68 * | 0.40 ± 0.14 | 3.22 ± 0.89 | 2.27 ± 0.40 # | 16.78 ± 1.36 * | 34.74 | |
ZL | I.V. | 1698.00 ± 904.47 | - | 1.15 ± 0.81 | 1.13 ± 0.29 | 1182.96 ± 155.52 | - |
I.P. | 232.08 ± 41.33 * | 0.23 ± 0.17 | 1.59 ± 0.77 | 1.29 ± 0.49 | 225.77 ± 85.89 * | 9.54 | |
Solution | 231.25 ± 15.84 * | 0.56 ± 0.13 * | 1.59 ± 0.48 | 1.50 ± 0.25 | 223.06 ± 14.49 * | 21.28 | |
NE | 234.5 ± 64.40 * | 0.37 ± 0.25 * | 2.81 ± 1.59 | 1.78 ± 0.27 | 245.38 ± 37.83 * | 26.03 | |
NE-ISG | 225.63 ± 49.14 * | 0.50 ± 0.11 * | 3.78 ± 2.06 | 3.48 ± 0.34 | 207.02 ± 18.32 * | 29.93 | |
BP | I.V. | 173.30 ± 118.63 | - | 0.88 ± 0.42 | 1.16 ± 0.45 | 144.72 ± 42.33 | - |
I.P. | 17.70 ± 3.57 * | 0.50 ± 0.20 | 1.79 ± 0.46 | 1.85 ± 0.49 | 31.59 ± 4.14 * | 10.91 | |
Solution | 20.47 ± 5.93 * | 0.23 ± 0.17 | 1.95 ± 0.61 | 1.78 ± 0.39 | 29.74 ± 10.38 * | 23.19 | |
NE | 17.00 ± 3.43 * | 0.55 ± 0.54 | 1.98 ± 1.13 | 2.58 ± 1.03 | 27.04 ± 8.33 * | 26.30 | |
NE-ISG | 17.08 ± 2.20 * | 0.50 ± 0.25 * | 3.09 ± 0.89 * | 2.79 ± 1.25 * | 17.63 ± 4.60 * | 31.63 |
Active Ingredients | Group | Sample | Cmax/μg/L | Tmax/h | t1/2/h | MRT(0–t)/h | AUC(0–t)/μg/L·h | BTI |
---|---|---|---|---|---|---|---|---|
SA | I.V. | blood | 1680.00 ± 164.84 | - | 1.14 ± 0.68 | 0.79 ± 0.18 | 1751.66 ± 98.68 | 0.22 |
brain | 74.20 ± 3.81 | 1.17 ± 0.28 | 2.08 ± 0.53 | 1.32 ± 0.19 | 187.13 ± 26.19 | |||
I.P. | blood | 289.66 ± 47.37 * | 0.50 ± 0.00 | 1.13 ± 0.44 | 1.12 ± 0.06 | 347.43 ± 32.39 * | - | |
brain | 102.00 ± 39.46 | 0.68 ± 0.28 | 1.08 ± 0.34 | 1.53 ± 0.18 | 166.04 ± 21.07 | |||
Solution | blood | 248.58 ± 77.17 * | 0.41 ± 0.14 | 0.94 ± 0.19 | 1.46 ± 0.35 | 304.41 ± 23.07 * | 0.97 | |
brain | 123.63 ± 59.65 | 0.83 ± 0.28 | 1.70 ± 1.07 | 1.96 ± 0.43 | 140.48 ± 55.01 | |||
NE | blood | 200.67 ± 39.95 * | 0.66 ± 0.28 | 1.84 ± 0.50 * | 1.93 ± 0.51 * | 350.60 ± 28.64 * | 1.19 | |
brain | 127.00 ± 31.11 | 0.58 ± 0.38 | 2.95 ± 1.07 | 2.31 ± 0.44 * | 199.74 ± 31.20 | |||
NE-ISG | blood | 377.66 ± 196.13 * | 0.50 ± 0.00 | 1.04 ± 0.63 | 2.09 ± 0.72 * | 273.5 ± 18.30 * | 1.73 | |
brain | 236.00 ± 28.28 * # | 0.50 ± 0.14 | 5.17 ± 4.25 | 2.44 ± 0.19 * | 226.65 ± 1.91 | |||
NOL | I.V. | blood | 863.33 ± 122.91 | - | 1.23 ± 0.71 | 1.15 ± 0.22 | 1138.52 ± 58.62 | 0.22 |
brain | 70.76 ± 20.99 | 0.83 ± 0.28 | 1.77 ± 1.29 | 1.61 ± 0.22 | 118.20 ± 23.39 | |||
I.P. | blood | 187.83 ± 69.37 * | 0.41 ± 0.14 | 0.79 ± 0.07 | 1.05 ± 0.19 | 188.40 ± 27.95 * | - | |
brain | 56.50 ± 16.26 | 0.66 ± 0.28 | 0.97 ± 0.34 | 1.47 ± 0.78 | 90.85 ± 526.80 | |||
Solution | blood | 192.33 ± 69.24 * | 0.66 ± 0.28 | 1.58 ± 0.92 | 1.27 ± 0.42 | 246.56 ± 4.98 * | 0.83 | |
brain | 67.16 ± 11.18 | 0.33 ± 0.14 | 1.61 ± 1.90 | 1.39 ± 0.75 | 98.19 ± 72.38 | |||
NE | blood | 236.35 ± 48.38 * | 0.66 ± 0.28 | 1.73 ± 0.28 | 1.82 ± 0.40 | 250.80 ± 90.78 * | 1.14 | |
brain | 73.33 ± 46.07 | 0.50 ± 0.66 | 2.62 ± 1.54 | 2.34 ± 0.34 | 138.23 ± 60.64 | |||
NE-ISG | blood | 216.00 ± 77.78 * | 0.50 ± 0.00 | 2.57 ± 0.52 | 1.71 ± 0.39 | 185.23 ± 23.51 * | 1.56 | |
brain | 136.66 ± 37.23 | 0.50 ± 0.00 | 5.11 ± 2.43 | 2.39 ± 0.15 | 139.03 ± 15.60 | |||
NBP | I.V. | blood | 185.00 ± 15.00 | - | 2.01 ± 1.53 | 1.75 ± 0.18 | 326.65 ± 28.14 | 0.18 |
brain | 7.47 ± 2.46 | 0.58 ± 0.38 | 0.63 ± 0.34 | 1.54 ± 0.17 | 11.33 ± 0.22 | |||
I.P. | blood | 29.17 ± 3.00 | 0.50 ± 0.00 | 2.46 ± 0.57 | 2.41 ± 0.11 | 85.15 ± 9.59 | - | |
brain | 6.96 ± 1.82 | 0.58 ± 0.38 | 1.71 ± 1.14 | 2.20 ± 0.28 | 16.52 ± 6.13 | |||
Solution | blood | 22.80 ± 6.14 | 0.50 ± 0.50 | 1.37 ± 0.66 | 1.98 ± 0.22 | 56.25 ± 10.95 | 1.57 | |
brain | 9.19 ± 3.77 | 0.25 ± 0.00 | 1.64 ± 0.22 | 2.24 ± 0.17 | 17.15 ± 3.37 | |||
NE | blood | 29.56 ± 32.59 | 0.83 ± 0.28 | 1.88 ± 0.39 | 2.77 ± 0.59 | 48.72 ± 0.60 | 1.87 | |
brain | 6.60 ± 1.67 | 0.33 ± 0.14 | 2.92 ± 0.94 | 2.10 ± 0.37 | 17.69 ± 4.61 | |||
NE-ISG | blood | 35.66 ± 3.85 | 1.00 ± 0.00 | 4.43 ± 2.55 | 2.22 ± 0.25 | 50.71 ± 11.03 | 2.01 | |
brain | 18.33 ± 0.57 * # | 0.50 ± 0.00 | 4.03 ± 1.87 | 2.92 ± 1.59 | 19.74 ± 6.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Wang, C.; Zhang, W.; Yang, T.; Xia, M.; Lei, X.; Peng, Y.; Wu, Y.; Feng, J.; Li, D.; et al. Preparation, In Vitro and In Vivo Evaluation of Nanoemulsion In Situ Gel for Transnasal Delivery of Traditional Chinese Medicine Volatile Oil from Ligusticum sinense Oliv.cv. Chaxiong. Molecules 2022, 27, 7644. https://doi.org/10.3390/molecules27217644
Huang C, Wang C, Zhang W, Yang T, Xia M, Lei X, Peng Y, Wu Y, Feng J, Li D, et al. Preparation, In Vitro and In Vivo Evaluation of Nanoemulsion In Situ Gel for Transnasal Delivery of Traditional Chinese Medicine Volatile Oil from Ligusticum sinense Oliv.cv. Chaxiong. Molecules. 2022; 27(21):7644. https://doi.org/10.3390/molecules27217644
Chicago/Turabian StyleHuang, Chunhui, Canjian Wang, Wenliu Zhang, Tao Yang, Mingyan Xia, Xiaomeng Lei, Ying Peng, Yuhuan Wu, Jianfang Feng, Dongxun Li, and et al. 2022. "Preparation, In Vitro and In Vivo Evaluation of Nanoemulsion In Situ Gel for Transnasal Delivery of Traditional Chinese Medicine Volatile Oil from Ligusticum sinense Oliv.cv. Chaxiong" Molecules 27, no. 21: 7644. https://doi.org/10.3390/molecules27217644
APA StyleHuang, C., Wang, C., Zhang, W., Yang, T., Xia, M., Lei, X., Peng, Y., Wu, Y., Feng, J., Li, D., & Zhang, G. (2022). Preparation, In Vitro and In Vivo Evaluation of Nanoemulsion In Situ Gel for Transnasal Delivery of Traditional Chinese Medicine Volatile Oil from Ligusticum sinense Oliv.cv. Chaxiong. Molecules, 27(21), 7644. https://doi.org/10.3390/molecules27217644