Transparent Polymer Opal Thin Films with Intense UV Structural Color
Abstract
:1. Introduction
2. Results
2.1. Structural Characterization
2.2. Transmittance Characterization
2.3. Reflectance Characterization
3. Materials and Methods
3.1. Synthesis of CIS Particles
3.2. Bending-Induced Oscillatory Shear (BIOS)
3.3. Electron Microscopy Imaging
3.4. Transmittance and Reflectance Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
References
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yablonovitch, E.; Gmitter, T. Photonic band structure: The face-centered-cubic case. Phys. Rev. Lett. 1989, 63, 1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Satpathy, S. Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations. Phys. Rev. Lett. 1990, 65, 2650. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.; Chan, C.T.; Soukoulis, C.M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 1990, 65, 3152. [Google Scholar] [CrossRef] [Green Version]
- Joannopoulos, J.D.; Villeneuve, P.R.; Fan, S. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149. [Google Scholar] [CrossRef]
- Yoshioka, S.; Kinoshita, S. Single-scale spectroscopy of structurally colored butterflies: Measurements of quantified reflectance and transmittance. J. Opt. Soc. Am. A 2006, 23, 134–141. [Google Scholar] [CrossRef]
- Kinoshita, S.; Yoshioka, S.; Fujii, Y.; Okamoto, N. Photophysics of structural color in the Morpho butterflies. Forma 2002, 17, 103–121. [Google Scholar]
- Liu, F.; Dong, B.Q.; Liu, X.H.; Zheng, Y.M.; Zi, J. Structural color change in longhorn beetles Tmesisternus isabellae. Opt. Express 2009, 17, 16183–16191. [Google Scholar] [CrossRef]
- Vignolini, S.; Rudall, P.J.; Rowland, A.V.; Reed, A.; Moyroud, E.; Faden, R.B.; Baumberg, J.J.; Glover, B.J.; Steiner, U. Pointillist structural color in Pollia fruit. Proc. Natl. Acad. Sci. USA 2012, 109, 15712–15715. [Google Scholar] [CrossRef] [Green Version]
- Örnborg, J.; Andersson, S.; Griffith, S.C.; Sheldon, B.C. Seasonal changes in a ultraviolet structural colour signal in blue tits, Parus caeruleus. Biol. J. Linn. Soc. 2002, 76, 237–245. [Google Scholar] [CrossRef]
- Griggio, M.; Hoi, H.; Pilastro, A. Plumage maintenance affects ultraviolet colour and female preference in the budgerigar. Behav. Processes 2010, 84, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.-Y.; Lee, S.-I.; Lee, J.; Choi, C.-Y.; Choe, J.C. Multiple structural colors of the plumage reflect age, sex, and territory ownership in the Eurasian Magpie Pica pica. Acta Ornithol. 2016, 51, 83–92. [Google Scholar] [CrossRef]
- Cai, C.-Y.; Tseng, S.-K.; Kuo, M.; Lin, K.-Y.A.; Yang, H.; Lee, R.-H. Photovoltaic performance of a N719 dye based dye-sensitized solar cell with transparent macroporous anti-ultraviolet photonic crystal coatings. RSC Adv. 2015, 5, 102803–102810. [Google Scholar] [CrossRef]
- Calvo, M.E.; Castro Smirnov, J.R.; Míguez, H. Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, J.R.C.; Ito, M.; Calvo, M.E.; López-López, C.; Jiménez-Solano, A.; Galisteo-López, J.F.; Zavala-Rivera, P.; Tanaka, K.; Sivaniah, E.; Míguez, H. Adaptable ultraviolet reflecting polymeric multilayer coatings of high refractive index contrast. Adv. Opt. Mater. 2015, 3, 1633–1639. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.; Russel, W.; Glantschnig, W. Settling suspensions of colloidal silica: Observations and X-ray measurements. J. Chem. Soc. Faraday Trans. 1991, 87, 411–424. [Google Scholar] [CrossRef]
- Gu, H.; Rong, F.; Tang, B.; Zhao, Y.; Fu, D.; Gu, Z. Photonic crystal beads from gravity-driven microfluidics. Langmuir 2013, 29, 7576–7582. [Google Scholar] [CrossRef]
- Shen, Z.; Shi, L.; You, B.; Wu, L.; Zhao, D. Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties. J. Mater. Chem. 2012, 22, 8069–8075. [Google Scholar] [CrossRef]
- Gallei, M. Functional Polymer Opals and Porous Materials by Shear-Induced Assembly of Tailor-Made Particles. Macromol. Rapid Commun. 2018, 39, 1700648. [Google Scholar] [CrossRef]
- Wu, P.; Shen, X.; Schäfer, C.G.; Pan, J.; Guo, J.; Wang, C. Mechanochromic and thermochromic shape memory photonic crystal films based on core/shell nanoparticles for smart monitoring. Nanoscale 2019, 11, 20015–20023. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, C.G.; Viel, B.; Hellmann, G.P.; Rehahn, M.; Gallei, M. Thermo-cross-linked elastomeric opal films. ACS Appl. Mater. Interfaces 2013, 5, 10623–10632. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, P.; Zhao, G.; Guo, J.; Wang, C. Fabrication of industrial-level polymer photonic crystal films at ambient temperature Based on uniform core/shell colloidal particles. J. Colloid Interface Sci. 2021, 584, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Finlayson, C.E.; Snoswell, D.R.; Haines, A.; Schäfer, C.; Spahn, P.; Hellmann, G.P.; Petukhov, A.V.; Herrmann, L.; Burdet, P. Large-scale ordering of nanoparticles using viscoelastic shear processing. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Viel, B.; Ruhl, T.; Hellmann, G.P. Reversible deformation of opal elastomers. Chem. Mater. 2007, 19, 5673–5679. [Google Scholar] [CrossRef]
- Ruhl, T.; Spahn, P.; Winkler, H.; Hellmann, G.P. Colloidal crystals from core-shell latex spheres by compression molding. In Mesophases, Polymers, and Particles; Springer: Berlin/Heidelberg, Germany, 2004; pp. 82–87. [Google Scholar]
- Schlander, A.M.B.; Gallei, M. Temperature-Induced Coloration and Interface Shell Cross-Linking for the Preparation of Polymer-Based Opal Films. ACS Appl. Mater. Interfaces 2019, 11, 44764–44773. [Google Scholar] [CrossRef]
- Spahn, P.; Finlayson, C.; Etah, W.M.; Snoswell, D.; Baumberg, J.; Hellmann, G. Modification of the refractive-index contrast in polymer opal films. J. Mater. Chem. 2011, 21, 8893–8897. [Google Scholar] [CrossRef]
- Rosetta, G.; An, T.; Zhao, Q.; Baumberg, J.J.; Tomes, J.J.; Gunn, M.D.; Finlayson, C.E. Chromaticity of structural color in polymer thin film photonic crystals. Opt. Express 2020, 28, 36219–36228. [Google Scholar] [CrossRef]
- Rosetta, G.; Butters, M.; Tomes, J.J.; Little, J.; Gunn, M.D.; Finlayson, C.E. Quantifying the saturation of structural color from thin film polymeric photonic crystals. In Proceedings of the Photonic and Phononic Properties of Engineered Nanostructures X, San Francisco, CA, USA, 26 February 2020; p. 112890. [Google Scholar]
- Finlayson, C.E.; Rosetta, G.; Baumberg, J.J. An Experimental and Theoretical Determination of Oscillatory Shear-Induced Crystallization Processes in Viscoelastic Photonic Crystal Media. Materials 2021, 14, 5298. [Google Scholar] [CrossRef]
- Finlayson, C.E.; Rosetta, G.; Tomes, J.J. Spectroscopic Ellipsometry and Optical Modelling of Structurally Colored Opaline Thin-Films. Appl. Sci. 2022, 12, 4888. [Google Scholar] [CrossRef]
- Schäfer, C.G.; Smolin, D.A.; Hellmann, G.P.; Gallei, M. Fully reversible shape transition of soft spheres in elastomeric polymer opal films. Langmuir 2013, 29, 11275–11283. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, T.; Spahn, P.; Winkler, H.; Hellmann, G.P. Large area monodomain order in colloidal crystals. Macromol. Chem. Phys. 2004, 205, 1385–1393. [Google Scholar] [CrossRef]
- Finlayson, C.E.; Baumberg, J.J. Generating bulk-scale ordered optical materials using shear-assembly in viscoelastic media. Materials 2017, 10, 688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, W.; Zhou, N.; Shi, L.; Zhang, K.-Q. Structural coloration of colloidal fiber by photonic band gap and resonant Mie scattering. ACS Appl. Mater. Interfaces 2015, 7, 14064–14071. [Google Scholar] [CrossRef]
- Nobbmann, U. Polydispersity-What Does it Mean for DLS and Chromatography? Available online: https://www.materials-talks.com/polydispersity-what-does-it-mean-for-dls-and-chromatography/ (accessed on 4 June 2022).
No. BIOS Passes | 0 | 10 | 20 | 40 |
---|---|---|---|---|
FWHM (°) | - | 16.2 ± 2.3 | 26.1 ± 3.0 | 32.7 ± 2.5 |
Peak reflectance (%) | 42.44 ± 3.5 | 76.1 ± 7.3 | 113.2 ± 11.6 | 103.9 ± 7.2 |
Displacement (°) | 20 | 15 | 10 | 5 | 0 | −5 | −10 | −15 | −20 |
---|---|---|---|---|---|---|---|---|---|
ϕm = 0° | 282 | 283 | 286 | 289 | 295 | 300 | 306 | 307 | 314 |
ϕm = 30° | 282 | 283 | 286 | 289 | 294 | 300 | 306 | 307 | 313 |
ϕm = 60° | 290 | 296 | 299 | 301 | 307 | 309 | 310 | 315 | 315 |
ϕm = 90° | 314 | 314 | 316 | 316 | 316 | 316 | 317 | 317 | 317 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosetta, G.; Gunn, M.; Tomes, J.J.; Butters, M.; Pieschel, J.; Hartmann, F.; Gallei, M.; Finlayson, C.E. Transparent Polymer Opal Thin Films with Intense UV Structural Color. Molecules 2022, 27, 3774. https://doi.org/10.3390/molecules27123774
Rosetta G, Gunn M, Tomes JJ, Butters M, Pieschel J, Hartmann F, Gallei M, Finlayson CE. Transparent Polymer Opal Thin Films with Intense UV Structural Color. Molecules. 2022; 27(12):3774. https://doi.org/10.3390/molecules27123774
Chicago/Turabian StyleRosetta, Giselle, Matthew Gunn, John J. Tomes, Mike Butters, Jens Pieschel, Frank Hartmann, Markus Gallei, and Chris E. Finlayson. 2022. "Transparent Polymer Opal Thin Films with Intense UV Structural Color" Molecules 27, no. 12: 3774. https://doi.org/10.3390/molecules27123774
APA StyleRosetta, G., Gunn, M., Tomes, J. J., Butters, M., Pieschel, J., Hartmann, F., Gallei, M., & Finlayson, C. E. (2022). Transparent Polymer Opal Thin Films with Intense UV Structural Color. Molecules, 27(12), 3774. https://doi.org/10.3390/molecules27123774