Aquilaria Species (Thymelaeaceae) Distribution, Volatile and Non-Volatile Phytochemicals, Pharmacological Uses, Agarwood Grading System, and Induction Methods
Abstract
:1. Introduction
2. Economic Value and Aquilaria Species Distribution
Economic Value
3. Aquilaria Identification Methods and Phytochemicals
3.1. Identification Methods
3.2. Phytochemicals
3.2.1. (A) Volatile Compounds of Agarwood
- Aromatic group
3.2.2. (B) Non-Volatile Compounds of Agarwood
- Fatty acids
- Chromones
- Terpenoids
- Steriods
- Flavonoids
- Alkaloids
3.3. Pharmacological Uses
3.3.1. Antibacterial
3.3.2. Anti-Tumor
3.3.3. Analgesia, Sedation, Anti-Inflammation
3.3.4. Relieving against Cough and Asthma
3.3.5. Antidepression and Anxiety
3.3.6. Anti-Oxidation and Anti-Aging
3.3.7. Effect on the Cardiovascular System
3.3.8. Clinical Application
3.4. Grading System for Agarwood Identification
3.5. Agarwood Induction Technique
3.5.1. Natural Induction
3.5.2. Artificial Induction
3.6. Future Perspectives and Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chinese Pharmacopoeia. National Pharmacopoeia Committee. 2020. Available online: http://wp.chp.org.cn/front/chpint/en/ (accessed on 19 December 2021).
- Liu, Y.Y.; Wei, J.H.; Gao, Z.H.; Zhang, Z. A review of quality assessment and grading for agarwood. Chin. Herb. Med. 2017, 9, 22–30. [Google Scholar] [CrossRef]
- Kumeta, Y.; Ito, M. Characterization of α-humulene synthases responsible for the production of sesquiterpenes induced by methyl jasmonate in Aquilaria cell culture. J. Nat. Med. 2016, 70, 452–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.Y.; Chen, D.L.; Wei, J.H.; Feng, J.; Zhang, Z.; Yang, Y.; Zheng, W. Four new 2-(2-phenylethyl) chromone derivatives from Chinese agarwood produced via the whole-tree agarwood-inducing technique. Molecules 2016, 21, 1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yumi, Z.; Has-Yun, H.; Kerr, P.G.; Phirdaous, A.; Hamzah, M.S. Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. J. Ethnopharmacol. 2016, 189. [Google Scholar] [CrossRef]
- Barden, A.; Anak, N.A.; Mulliken, T.; Song, M. Heart of the matter: Agarwood use and trade and CITES implementation for Aquilaria malaccensis. Traffic Network Rep. 2000, 46, 17–18. [Google Scholar]
- Gärdenfors, U.; Hilton Taylor, C.; Mace, G.M.; Rodriguez, J. The application of IUCN red list criteria at regional levels. Conserv. Biol. 2001, 15, 1206–1212. [Google Scholar] [CrossRef]
- Germplasm Resources Information Network Taxonomy for Plant. Available online: https://trade.cites.org/# (accessed on 12 December 2021).
- Hsuan, K. The Concise Flora of Singapore. Gymnosperms and Dicotyledons; University Press: Singapore, 1990. [Google Scholar] [CrossRef]
- Parris, B.S. Flora of Peninsular Malaysia; Forest Research Institute: Kuala Lumpur, Malaysia, 2010. [Google Scholar]
- Wong, Y.F.; Chin, S.T.; Perlmutter, P.; Marriott, P.J. Evaluation of comprehensive two-dimensional gas chromatography with accurate mass time-of-flight mass spectrometry for the metabolic profiling of plant–fungus interaction in Aquilaria malaccensis. J. Chromatogr. 2015, 1387, 104–115. [Google Scholar] [CrossRef]
- Ismail, N.; Ali, N.A.M.; Jamil, M.; Rahiman, M.H.F.; Tajuddin, S.N.; Taib, M.N. A review study of agarwood oil and its quality analysis. J. Teknol. 2014, 68, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Talukdar, N.C.; Khan, M. A simple metabolite profiling approach reveals critical biomolecular linkages in fragrant agarwood oil production from Aquilaria malaccensis–a traditional agro-based industry in North East India. Curr. Sci. 2015, 108, 63–71. [Google Scholar]
- Ishihara, M.; Tsuneya, T.; Uneyama, K. Components of the agarwood smoke on heating. J Essent. Oil Res. 1993, 5, 419–423. [Google Scholar] [CrossRef]
- Ishihara, M.; Tsuneya, T.; Uneyama, K. Components of the volatile concentrate of agarwood. J. Essent. Oil Res. 1993, 5, 283–289. [Google Scholar] [CrossRef]
- Du, H.f.; Xiong, L.y.; Lin, L.; Sshuai, O.; Qi, L.k. Simultaneous determination of five kinds of chromone in Aguilariae lignum resinatum by HPLC. CTMFJ 2015, 20, 87–90. [Google Scholar]
- Zou, M.M.; Xia, Z.Q.; Lu, C.; Wang, H.; Ji, J.; Wang, W.J. Genetic diversity and differentiation of Aquilaria sinensis (Lour.) Gilg revealed by ISSR and SRAP markers. Crop Sci. 2012, 52, 2304–2313. [Google Scholar] [CrossRef]
- Niu, X.; Ji, K.; Lu, G. Preliminary studies on identification of Aquilaria sinensis (L.) Gilg by the PCR product of rDNA ITS sequencing. Gd. Agric. Sci. 2010, 37, 167–169. [Google Scholar]
- Shen, Y.; Tan, X.; Zhao, X.; Pang, Q.; Zhao, S.J. Pharmacy, Ribosomal DNA ITS sequence analysis of Aquilaria sinensis from different geographical origin in China. Chin. J. Trad. Chin. Med. Pharm. 2009, 24, 539–541. [Google Scholar]
- Chen, X.; Gao, Y.; Li, W.J.C.P. Study on the correlation between the volatile constituents of Aquilaria sinensis and the inducing methods. Chin. Pharm. 2012, 23, 1017–1020. [Google Scholar]
- Zhang, Z.; Han, X.-M.; Wei, J.-H.; Xue, J.; Yang, Y.; Liang, L.; Li, X.J.; Guo, Q.M.; Xu, Y.H.; Gao, Z.H. Compositions and antifungal activities of essential oils from agarwood of Aquilaria sinensis (Lour.) Gilg induced by Lasiodiplodia theobromae (Pat.) Griffon. & Maubl. J. Brazil. Chem. Soc. 2014, 25, 20–26. [Google Scholar]
- Tajuddin, S.N.; Yusoff, M.M. Chemical composition of volatile oils of Aquilaria malaccensis (Thymelaeaceae) from Malaysia. Nat. Prod. Commun. 2010, 5, 1965–1968. [Google Scholar] [CrossRef] [Green Version]
- Mei, W.L.; Zeng, Y.B.; Liu, J.; Dai, F. GC-MS analysis of volatile constituents from five different kinds of Chinese eaglewood. J. Chin. Med. Mat. 2007, 30, 551–555. [Google Scholar]
- Lin, F.; Mei, W.L.; Wu, J.; Dai, F. GC-MS analysis of volatile constituents from Chinese agarwood produced by artificial methods. Chin. Herb. Med. 2010, 33, 222–225. [Google Scholar]
- Bhardwaj, I.; Sharma, M.J. Pharmacology, Herbal anesthetic agents: An overview on sources, uses and future perspectives. AJPS 2019, 5, 21–27. [Google Scholar]
- Mei, W.L.; Zeng, Y.B.; Wu, J.; Cui, H.B.; Dai, F. Chemical composition and anti-MRSA activity of the essential oil from Chinese eaglewood. AJPS 2008, 17, 225–229. [Google Scholar]
- Liu, J.; Zhang, X.; Yang, J.; Zhou, J.; Yuan, Y.; Jiang, C.; Chi, X.; Huang, L.J. Agarwood wound locations provide insight into the association between fungal diversity and volatile compounds in Aquilaria sinensis. R. Soc. Open. Sci. 2019, 6, 190–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, W.-L.; Yang, D.-L.; Wang, H.; Yang, J.-L.; Zeng, Y.-B.; Guo, Z.-K.; Dong, W.-H.; Li, W.; Dai, F. Characterization and determination of 2-(2-phenylethyl) chromones in agarwood by GC-MS. J. Med. 2013, 18, 12324–12345. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Li, W.; Wang, H.; Chen, H.; Cai, C.; Yang, L.; Jiang, B.; Yang, Y.; Mei, W.; Dai, F. LC-MS guided identification of dimeric 2-(2-phenylethyl) chromones and sesquiterpene-2-(2-phenylethyl) chromone conjugates from agarwood of Aquilaria crassna and their cytotoxicity. Fitoterapia 2019, 138. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Mei, W.L.; Kong, F.D.; Chen, H.Q.; Li, W.; Chen, Z.B.; Dai, F. Four new bi-2-(2-phenylethyl) chromone derivatives of agarwood from Aquilaria crassna. Fitoterapia 2017, 119, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, H.X.; Li, W.S.; Tao, M.H.; Pan, Q.L.; Sun, Z.H.; Ye, W.; Li, H.H.; Zhang, W.M. 2-(2-phenylethyl) chromones from endophytic fungal strain Botryosphaeria rhodina A13 from Aquilaria sinensis. Chin. Herb. Med. 2017, 9, 58–62. [Google Scholar] [CrossRef]
- Mei, W.L.; Cai, H.C.; Dong, W.H.; Guo, Z.K.; Wang, H.; Mei, W.L.; Dai, H.F. 2-(2-Phenylethyl)chromone derivatives from Chinese agarwood induced by artificial holing. Fitoterapia 2014, 98, 117–123. [Google Scholar]
- Yang, J.J. Study on quality evaluation method of agarwood from China. Master’s Thesis, Hainan University, Haikou, China, 2015. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201702&filename=1015592278.nh&uniplatform=NZKPT&v=UxkWd_b6Efird7uOwyv1LxhWn2np-jaCL5kGrHJG0gB9s3ToeGtfVufTgjYZpRhf (accessed on 19 December 2021).
- Shimada, Y.; Tominaga, T.; Konishi, T.; Kiyosawa, S. Studies on the agarwood (Jinko). I. Structures of 2-(2-phenylethyl) chromone derivatives. Chem. Pharm. Bull. 1982, 30, 3791–3795. [Google Scholar] [CrossRef] [Green Version]
- Shimada, Y.; Konishi, T.; Kiyosawa, S.; Nishi, M.; Miyahara, K.; Kawasaki, T. Studies on the agalwood (Jinko). IV.: Structures of 2-(2-Phenylethyl) chromone derivatives, agarotetrol and isoagarotetrol. Chem. Pharm. Bull. 1986, 34, 2766–2773. [Google Scholar] [CrossRef] [Green Version]
- Sukkaew, S.; Pripdeevech, P.; Thongpoon, C.; Machan, T.; Wongchuphan, R. Volatile constituents of murraya koenigii fresh leaves using headspace solid phase microextraction–gas chromatography–mass spectrometry. Nat. Prod. Commun. 2014, 9, 1783–1786. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Q.; Wei, J.H.; Yang, J.S.; Zhang, Z.; Yang, Y.; Gao, Z.H.; Sui, C.; Gong, B. Chemical constituents of agarwood originating from the endemic genus Aquilaria plants. Chem. Biodivers. 2012, 9, 236–250. [Google Scholar] [CrossRef] [PubMed]
- Naef, R. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: A review. Flavour. Frag. J. 2011, 26, 73–87. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Yang, Y.; Zhang, Z.; Wei, J.; Meng, H.; Chen, W.; Feng, J.; Gan, B.; Chen, X.J. Whole-tree agarwood-inducing technique: An efficient novel technique for producing high-quality agarwood in cultivated Aquilaria sinensis trees. Molecules 2013, 18, 3086–3106. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhang, W.; Hu, Z.; Jin, M.; Yu, X.J. Recent advances in chromatography coupled bioassay for screening bioactive natural products. Chin. J. Chromatogr. 2004, 22, 616–619. [Google Scholar]
- Ismail, N.; Rahiman, M.H.F.; Taib, N.; Ibrahim, M.; Zareen, S.; Tajuddin, S.N. Direct thermal desorption (DTD) extraction for different qualities of agarwood incense analysis. CSPA 2016, 12, 291–294. [Google Scholar]
- Yang, L.; Qiao, L.R.; Xie, D.; Dai, F.; Guo, S.X. Sesquiterpenes and monoterpene from Aquilaria sinensis. Chin. J. Chin. Mater. Med. 2012, 13, 1973–1976. [Google Scholar]
- Wang, S.; Yu, Z.; Wang, C.; Wu, C.; Guo, P.; Wei, J. Chemical constituents and pharmacological activity of agarwood and Aquilaria plants. Molecules 2018, 23, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Chen, H.Q.; Wang, H.; Mei, W.L.; Dai, F. Natural products in agarwood and Aquilaria plants: Chemistry, biological activities and biosynthesis. Nat. Prod. Rep. 2021, 38, 528–565. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Haigang, P. Study on the chemical constituents of volatile oil from tagara agarwood. Gd. Chem. Ind. 2012, 39, 257–258. [Google Scholar]
- Yang, L.; Qiao, L.R.; Xie, D.; Dai, J.G.; Guo, S.X. Diterpenoids from Chinese eaglewood. Chin. J. Chin. Mat. Med. 2011, 36, 2088–2091. [Google Scholar]
- Yang, L.; Qiao, L.R.; Ji, C.X.; Xie, D.; Gong, N.B.; Lu, Y.; Zhang, J.J.; Dai, J.G.; Guo, S.X. Antidepressant abietane diterpenoids from Chinese eaglewood. J. Nat. Prod. 2013, 76, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Dan, B.; Yue, L.S.; Peng, F.T. Flavanoids from the stems of Aquilaria sinensis. Chin. J. Nat. Med. 2012, 10, 87–291. [Google Scholar]
- Qi, J.; Lu, J.J.; Liu, J.H.; Yu, B.Y. Flavonoid and a rare benzophenone glycoside from the leaves of Aquilaria sinensis. Chem. Pharm. Bull. 2009, 57, 134–137. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Song, Y.L.; Nie, C.X.; Ma, X.; Tu, P.F. Chemical constituents from Aquilaria sinensis (Lour.) Gilg. J. Chin. Pham. Sci. 2012, 21, 88–92. [Google Scholar]
- Hendra, H.; Moeljopawiro, S.; Nuringtyas, T.R. Antioxidant and antibacterial activities of agarwood (Aquilaria malaccensis Lamk.) leaves. AIP Conf. Proc. 2016, 1755. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Mei, W.; Dong, W.; Cai, C.; Gai, C.J. Study on chemical constituents of Chinese agarwood “Qi-Nan”. J. Trop. Subtrop. Bot. 2019, 27, 196–202. [Google Scholar]
- Chen, C.T.; Yeh, Y.T.; Chao, D.; Chen, C.Y. Chemical constituents from the wood of Aquilaria sinensis. Chem. Nat. Compd. 2013, 49, 113–114. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M.J.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Wang, H.N.; Dong, W.H.; Huang, S.Z.; Li, W.; Kong, F.D.; Wang, H.; Wang, J.; Mei, W.L.; Dai, F. Three new sesquiterpenoids from agarwood of Aquilaria crassna. Fitoterapia 2016, 114, 7–11. [Google Scholar] [CrossRef]
- Suzuki, A.; Miyake, K.; Saito, Y.; Rasyid, F.A.; Tokuda, H.; Takeuchi, M.; Suzuki, N.; Ichiishi, E.; Fujie, T.; Goto, M. Phenylethylchromones with in vitro antitumor promoting activity from Aquilaria filaria. Planta. Med. 2017, 83, 300–305. [Google Scholar] [CrossRef]
- Chen, X.Y.; Huang, Y.Q. Grey relational analysis of volatile components and anti-tumor activity of agarwood. Proprietary Chin. Med. 2018, 40, 224–227. [Google Scholar]
- Dahham, S.S.; Hassan, L.E.A.; Ahamed, M.B.K.; Majid, A.S.A.; Majid, A.M.S.A.; Zulkepli, N.N. In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassna). BMC Complem. Altern. Med. 2016, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhou, Y.; Fuchao, M.; Zhang, Q.; Liu, Y.; Gong, B.; Guo, P.; Wei, J.H. Effect of agarwood produced by whole-tree agarwood-inducing technique on hypnotic and spontaneous activity inhibition of mice. J. Int. Pharm. Res. 2016, 43, 1082–1087. [Google Scholar]
- Wang, S.; Wang, C.; Peng, D.; Liu, X.; Wu, C.; Guo, P.; Wei, J. Agarwood essential oil displays sedative-hypnotic effects through the GABAergic system. Molecules 2017, 22, 2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.L. Anti-inflammatory effect of Chinese agarwood essential oil via inhibiting p-STAT3 and IL-1β /IL-6. Chin. Pharm. J. 2019, 54, 1951–1957. [Google Scholar]
- Wu, G.L. A brief discussion on the clinical effect of anesthetic medicine Ba Wei Chen Xiang in the treatment of bronchial asthma. Latest Med. Inf. Abs. 2017, 17, 142–144. [Google Scholar]
- Zhou, F.; Tian, S.; Pan, J.; Mei, Q. Contrastive study on the pharmacological action of alcohol extract caulis cinnamomi camphorae and lignum Aquilariae Sinensis. J. Trad. Chin. Med. 2013, 28, 1849–1850. [Google Scholar]
- Wang, S.; Wang, C.; Yu, Z.; Wu, C.; Peng, D.; Liu, X.; Liu, Y.; Yang, Y.; Guo, P.; Wei, J.H. Agarwood essential oil ameliorates restrain stress-induced anxiety and depression by inhibiting HPA axis hyperactivity. Molecules 2018, 19, 3468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, F.h.; Peng, Y.h.; Ke, F.f.; Deng, Y.L. Experimental study on the content, antioxidant activity in vitro, and delaying aging effect of tannins from the leaf of Aquilaria sinensis (Lour.) Gilg. J. Gd. Pham. Univer. 2012, 3, 259–262. [Google Scholar]
- Lee, H.Y.; Lee, J.S.; Kim, H.G.; Kim, W.Y.; Lee, S.B.; Choi, Y.H.; Son, C.G. The ethanol extract of Aquilariae Lignum ameliorates hippocampal oxidative stress in a repeated restraint stress mouse model. BMC Complem. Altern. Med. 2017, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.X.; Tang, S.H.; Zheng, Y.C. Development, progress of studies on bioactive peptides derived from meat and its by-product. Food R&D 2017, 6, 206–212. [Google Scholar]
- Yang, M.; Li, Y.F.; Ma, Q.S.; Ge, R.L. Effect of 50% ethanol-extract from Bawei Chenxiang Powder on hemodynamics in myocardial ischemia rats. Chin. J. Trad. Chin. Med. 2011, 11, 2740–2742. [Google Scholar]
- Sugiyama, T.; Narukawa, Y.; Shibata, S.; Masui, R.; Kiuchi, F. Three new 5, 6, 7, 8-tetrahydroxy-5, 6, 7, 8-tetrahydrochromone derivatives enantiomeric to agarotetrol from agarwood. J. Nat. Med. 2018, 72, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Chunyan, Y.; ZhuYanmei, W.L.; Qiong, W. Effect of tibetan BaWei ChenXiang Powder on cerebral ischemia reperfusion injury in rats with apoptosis neurons at hippocampal CA1 area. J. QH. Med. Colle. 2011, 4, 243–246. [Google Scholar]
- Fu, K.; Xu, M.; Zhou, Y.; Li, X.; Wang, Z.; Liu, X.; Meng, X.; Zeng, Y.; Zhang, H. The Status quo and way forwards on the development of tibetan medicine and the pharmacological research of tibetan materia medica. Pham. Res. 2020, 155, 104688. [Google Scholar] [CrossRef]
- Gao, A.R. Clinical observation of BaWwei Chenxiang Powder in the treatment of coronary heart disease and angina pectoris. Latest Med. Inf. Abs. 2018, 18, 246–254. [Google Scholar]
- Wang, Y.Q.; Liu, F. Clinical therapeutic effects on functional constipation treated with the external application of Chenxiang Tongbian Powder on the Umbilicus and Moxibustion. World J. Integr. Tradit. West Med. 2017, 12, 1546–1549. [Google Scholar]
- Xie, B.; Luo, H.; Huang, X.; Huang, F.; Zhang, Q.; Wu, X.; Zhou, X.; Wu, H. Pharmacokinetic studies of six major 2-(2-phenylethyl) chromones in rat plasma using ultra high performance liquid chromatography with tandem mass spectrometry after oral administration of agarwood ethanol extract. J. Separ. Sci. 2021, 44, 2418–2426. [Google Scholar] [CrossRef]
- Ismail, N.; Ali, N.A.M.; Jamil, M.; Rahiman, M.H.F.; Taib, M.N.; Tajuddin, S.N. Major volatile chemical compounds of agarwood oils from Malaysia based on z-score technique. J. Chem. Nat. Compd. 2015, 51, 776–779. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Fan, Y.; Lei, Z.; Pan, Q.; Zhong, Z.; Liu, D.; Zhang, W.; Gao, X. Correlation between agaropiric acid and extract contents in artificial Aquilariae lignum resinatum. Chin. J. Exp. Tradit. Med. Form. 2016, 22, 55–59. [Google Scholar]
- Zhao, Y.; Fang, Z.J. Quality assessment of Chinese eaglewood by the technique of Aquilaria sinensis quintana making incense and the determination of benzyl acetone. J. Gd. Pham. Univ. 2013, 29, 253–257. [Google Scholar]
Species | Origin | References |
---|---|---|
Aquilaria malaccensis Lam. | India, Myanmar, Malaysia, Indonesia, Philippines | [6,7,8] |
Aquilaria sinensis (Lour.) Gilg | China | [7,8] |
Aquilaria microcarpa Baill | Indonesia | [6,7,8,9] |
Aquilaria apiculata Merr | Philippines | [8] |
Aquilaria baillonii Pierre ex Lecomte | Cambodia, Thailand, Laos, Vietnam | [6,8] |
Aquilaria banaensis P.H.H6 | Vietnam | [6,7] |
Aquilaria beccariana Tiegh | Indonesia | [6,7] |
Aquilaria citrinicarpa (Elmer) Hallier f. | Philippines | [6,8,10] |
Aquilaria cumingiana (Decne) Ridl | Malaysia | [8] |
Aquilaria khasiana Hallier f. | India | [6,7,8] |
Aquilaria apiculata Merr | Philippines | [8,10] |
Aquilaria parvifolia (Quisumb) Ding Hon | Philippines | [6,10] |
Aquilaria rostrata Ridl | Malaysia | [6,7,9] |
Aquilaria rugosa Kiet Kessler | Vietnam | [8] |
Aquilaria subintegra Ding Hon | Thailand | [8,9] |
Aquilaria urdanetensis (Elmer) Hallier f. | Philippines | [8,10] |
Aquilarla yunnanensis S.C. Huang | China | [7,8] |
Name | Contents (%) | Chemical Structure | Reference |
---|---|---|---|
Benzylacetone | 0.95 | | [23] |
2,4-Di-tert-butylphenol | 4.15 | | |
3,5-Di-tert- butylphenol | 2.70 | | |
4-Methoxyphenylacetone | 0.95 | |
Name | Chemical Structure | Reference |
---|---|---|
2-[2-(4-Hydroxyphenyl)ethyl]chromone | | [33] |
5,6,7,8,-Tetrahydroxy-5,6,7,8-tetrahydro-2-[2-(4-methoxyphenyl)ethy]-chromone | | |
Rel-(1AR,2R,3R,7bS)-1a,2,3,7b-Tetrahydro-2,3-hidydroxy-5[2-(4-methoxyphenyl)ethy]-7H-oxireno[f][1]benzophran-7-one | | |
Oxidoagarchromones A | | |
6,8′-Dihydroxy-2-2′-bis(2-phenylethyl)-4H,4′H-5,5′-bichromone-4,4′-dione | | |
Agarotetrol | | [34,35] |
Isoagarotetrol | | |
2-(2-phenylethyl) chromone | | |
2-[2-(4-methoxyphenyl) ethyl] chromone | |
Name | Chemical Structure | Reference |
---|---|---|
7α,15-Dihydroxydehydroabietic acid | | [46] |
Methyl 7-oxodehydroabietate | | |
7α-hydroxypodocarpen-8(14)-en-13-on-18-oic acid | | |
18-norpimara-8(14),15-dien-4αα-ol | | |
18-norpimara-8(14), and 15-dien-4α-ol | | |
7α, 12α, 13α-trihydroxyabiet-8(14)-en-18-oic acid acetonide | | [47] |
6α, 13α, 14α-trihydroxyabiet-7-en-18-oic acid | | |
13α, 14α, 15-trihydroxy-7-oxoabiet-8-en-18-oic acid | | |
13β, 14β-epoxyabiet-7-en-18, 6α-olide | | |
7α, 12β, 13β-trihydroxyabiet-8(14)-en-18-oic acid | | |
7α-hydroxyabieta-15-methoxy-8,11,13-trien18-oic acid | | |
7α-hydroxyabieta-15-methoxy-8,11,13-trien18-oic acid | | |
12α-ethoxyabieta-7,13-dien-18-oic acid | | |
7,13-dioxopodocarpan-18-oic acid | | |
α-Agarofuran | | [36] |
(5S,7S,10S)-(-)Selina-3,11-dien-9-one | | |
(+)-(4S,5R)-Dihydrokaranone | | |
α-Guaiene | | |
Agarospirol | | |
8-β-H-Dihydrogmelofuran | | |
(-)-bornyl ferulate | | [37] |
Pharmacological Action | Active Substance | Action Mechanism |
---|---|---|
Antibacterial and bacteriostatic | Sesquiterpenes | Its antibacterial mechanism can induce cell apoptosis through the process of nuclear condensation and cleavage. |
Anti-tumor | Sesquiterpene, chromone, and triterpene | Its mechanism may be related to the induction of apoptosis through nuclear condensation and breakage, including the destruction of mitochondrial membrane potential. |
Sedation, analgesia, and anti-inflammation | Sesquiterpene and chromone | The mechanism of analgesia and sedation may be related to the regulation of gene expression of GABAA receptor, enhancement of GABAA receptor function, and promotion of Cl−1 influx, and the anti-inflammatory mechanism may be related to the inhibition of granulocyte respiratory burst, inhibition of pro-inflammatory cytokines (IL-1 β, IL-6, and TNF- α), and decrease in lipid peroxidation (MDA). |
Relieving cough and relieving asthma | Terpenoid/chromone | It is speculated that the mechanism by which agarwood relieves asthma may be related to anti-inflammation, anti-apoptosis, improvement of pathological changes of lung and an intestinal tract, abnormal function, and balance of immunity. |
Antidepressant | Diterpene | The mechanism may be related to the inhibition of the corticotropin-releasing factor (CRF) gene expression and the hyperactivity of the hypothalamus–pituitary–adrenal (HPA) axis, as well as the inhibition of corticotropin receptor gene transcription and protein expression in the cerebral cortex and hippocampus. |
Anti-oxidation and anti-aging | Flavonoids and sesquiterpenes | The mechanism may be related to the regulation of reactive oxygen clusters and proinflammatory cytokines by microglia and the release of stress hormones. |
Cardiovascular system | Chromone | The mechanism may inhibit cardiomyocyte apoptosis after ischemia/reperfusion by regulating B lymphocyte tumor-2 gene (Bcl-2) and to down-regulating rabbit anti-human monoclonal antibody (Bax). |
Morphological Feature | Grade | ||
---|---|---|---|
A | B | C | |
Color | Dark brown or khaki with a small number of white spots | Yellowish or reddish-brown with more white spots | Khaki or yellowish-brown with a large number of white spots |
Density of resin | Very dense and compact, sink in water when soaked | Dense and less compact, half-sinkage in water | Light and not dense, full-floating on water |
Weight | Hard texture, brittle, and not hollowed | The texture is a little hard, a little brittle, and slightly hollow | Loose texture, not brittle, and hollow |
Aroma | Strong odor, feel sweet and cool. | Less potent odor, feel sweet and slightly spicy | The aroma is light, feel slightly sweet and salty |
Sense of oiliness | Have a strong sense of oiliness | Have a strong sense of oiliness | The sense of oiliness is weak |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hussain, M.; Jiang, Z.; Wang, Z.; Gao, J.; Ye, F.; Mao, R.; Li, H. Aquilaria Species (Thymelaeaceae) Distribution, Volatile and Non-Volatile Phytochemicals, Pharmacological Uses, Agarwood Grading System, and Induction Methods. Molecules 2021, 26, 7708. https://doi.org/10.3390/molecules26247708
Wang Y, Hussain M, Jiang Z, Wang Z, Gao J, Ye F, Mao R, Li H. Aquilaria Species (Thymelaeaceae) Distribution, Volatile and Non-Volatile Phytochemicals, Pharmacological Uses, Agarwood Grading System, and Induction Methods. Molecules. 2021; 26(24):7708. https://doi.org/10.3390/molecules26247708
Chicago/Turabian StyleWang, Yichen, Mubasher Hussain, Zhenbin Jiang, Zhaohong Wang, Jing Gao, Fengxian Ye, Runqian Mao, and He Li. 2021. "Aquilaria Species (Thymelaeaceae) Distribution, Volatile and Non-Volatile Phytochemicals, Pharmacological Uses, Agarwood Grading System, and Induction Methods" Molecules 26, no. 24: 7708. https://doi.org/10.3390/molecules26247708
APA StyleWang, Y., Hussain, M., Jiang, Z., Wang, Z., Gao, J., Ye, F., Mao, R., & Li, H. (2021). Aquilaria Species (Thymelaeaceae) Distribution, Volatile and Non-Volatile Phytochemicals, Pharmacological Uses, Agarwood Grading System, and Induction Methods. Molecules, 26(24), 7708. https://doi.org/10.3390/molecules26247708