Characteristic-Aroma-Component-Based Evaluation and Classification of Strawberry Varieties by Aroma Type
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of VOCs in the Fruit
2.3. Identification and Contents of VOCs
2.4. Characteristic-Aroma-Component-Based Classification of Strawberries by Aroma Type
3. Results and Analysis
3.1. VOCs in 16 Strawberry Varieties
3.2. PVC Spectra and Characteristic Aromas of 16 Strawberry Varieties
3.3. Classification of 16 Strawberry Varieties by Aroma Type
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ulrich, D.; Hoberg, E.; Rapp, A.; Kecke, S. Analysis of strawberry flavour-discrimination of aroma types by quantification of volatile compounds. Z. Lebensm.-Forschung A 1997, 205, 218–223. [Google Scholar] [CrossRef]
- Du, X.; Plotto, A.; Baldwin, E.; Rouseff, R. Evaluation of volatiles from two subtropical strawberry cultivars using GC-olfactometry, GC-MS odor activity values, and sensory analysis. J. Agric. Food Chem. 2011, 59, 12569–12577. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.; Geppert, J.; Funken, E.; Stamminger, R. Consumers Perceptions and Preference for Strawberries—A Case Study from Germany. Int. J. Fruit Sci. 2015, 15, 405–424. [Google Scholar] [CrossRef]
- Wu, X.; Gao, Z.; Li, Z.; Cheng, J. Present Situation & Trend of Strawberry Cultivation in China and Abroad. J. Beijing Voc. Col. Agric. 2016, 30, 21–26. [Google Scholar]
- Zhang, Y.; Wang, G.; Dong, J.; Zhou, H.; Kong, J.; Han, Z. Analysis of Volatile Components in Strawberry Cultivars ‘Xingdu 1′ and ‘Xingdu 2′ and Their Parents. Sci. Agric. Sin. 2008, 10, 3208–3213. [Google Scholar] [CrossRef]
- Li, H.; Dai, H.; Liu, Y.; Ma, Y.; Wu, D.; Zhang, Z. A New Strawberry Cultivar ‘Yanli’. Acta Hortic. Sin. 2015, 4, 799–800. [Google Scholar]
- Ulrich, D.; Kecke, S.; Olbricht, K. What Do We Know about the Chemistry of Strawberry Aroma? J. Agric. Food Chem. 2018, 66, 3291–3301. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Dong, J.; Zhong, C.; Chang, L.; Wang, L. Analysis of volatile compounds in 33 euramerican strawberry cultivars. J. Fruit Sci. 2011, 28, 438–442. [Google Scholar]
- Werkhoff, P.; Brennecke, S.; Bretschneider, W.; Güntert, M.; Hopp, R.; Surburg, H. Chirospecific analysis in essential oil, fragrance and flavor research. Eur. Food Res. Technol. 1993, 196, 307–328. [Google Scholar] [CrossRef]
- Forney, C.F.; Kalt, W.; Jordan, M.A. The Composition of Strawberry Aroma Is Influenced by Cultivar, Maturity, and Storage. Hortscience 2000, 35, 1022–1026. [Google Scholar] [CrossRef] [Green Version]
- Buratti, S.; Malegori, C.; Benedetti, S.; Oliveri, P.; Giovanelli, G. E-nose, e-tongue and e-eye for edible olive oil characterization and shelf life assessment: A powerful data fusion approach. Talanta 2018, 182, 131–141. [Google Scholar] [CrossRef]
- Mathias, Z.; Marc, P.; Julia, K.; Natalie, H.; Christoph, R.; Manfred, E.; Veronika, S. Contribution of the ratio of tocopherol homologs to the oxidative stability of commercial vegetable oils. Molecules 2018, 23, 206. [Google Scholar]
- Kamal-Eldin, A. Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur. J. Lipid Sci. Technol. 2006, 108, 1051–1061. [Google Scholar] [CrossRef]
- Rasekh, M.; Karami, H.; Wilson, A.D.; Gancarz, M. Classification and Identification of Essential Oils from Herbs and Fruits Based on a MOS Electronic-Nose Technology. Chemosensors 2021, 9, 142. [Google Scholar] [CrossRef]
- Khorramifar, A.; Rasekh, M.; Karami, H.; Malaga-Toboła, U.; Gancarz, M. A machine learning method for classification and identification of potato cultivars based on the reaction of MOS type Sensor-Array. Sensors 2021, 21, 5836. [Google Scholar] [CrossRef] [PubMed]
- Martínez Gila, D.M.; Sanmartin, C.; Navarro Soto, J.; Mencarelli, F.; Gómez Ortega, J.; Gámez García, J. Classification of olive fruits and oils based on their fatty acid ethyl esters content using electronic nose technology. In J. Food Meas. Charact.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–12. [Google Scholar]
- García-González, D.L.; Aparicio, R. Coupling MOS sensors and gas chromatography to interpret the sensor responses to complex food aroma: Application to virgin olive oil. Food Chem. 2010, 120, 572–579. [Google Scholar] [CrossRef]
- Li, X.X.; Fukuhara, K.; Hayata, Y. Concentrations of Character Impact Odorants in ‘Toyonoka’ Strawberries Quantified by Standard Addition Method and PQ Column Extraction with GC-MS Analysis. J. Jpn. Soc. Hort. Sci. 2009, 78, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Vandendriessche, T.; Keulemans, J.; Geeraerd, A.; Nicolai, B.M.; Hertog, M.L.T.M. Evaluation of fast volatile analysis for detection of Botrytis cinerea infections in strawberry. Food Microbiol. 2012, 32, 406–414. [Google Scholar] [CrossRef]
- Ulrich, D.; Olbricht, K. Diversity of volatile patterns in sixteen Fragaria vesca L. accessions in comparison to cultivars of Fragaria × ananassa. J. Appl Bot. Food Qual. 2013, 86, 37–46. [Google Scholar]
- Vandendriessche, T.; Geerts, P.; Membrebe, B.N.; Keulemans, J.; Nicolai, B.M.; Hertog, M.L. Journeys through aroma space: A novel approach towards the selection of aroma-enriched strawberry cultivars in breeding programmes. Plant. Breed. 2013, 132, 217–223. [Google Scholar] [CrossRef]
- Rachna, M.; Abhijit, K. Effect of storage on the physicochemical and flavour attributes of two cultivars of strawberry cultivated in Northern India. Sci. World J. 2014, 2014, 794926. [Google Scholar]
- Cannon, R.J.; Agyemang, D.; Curto, N.L.; Yusuf, A.; Chen, M.Z.; Janczuk, A.J. In-depth analysis of Ciflorette strawberries (Fragaria × ananassa ‘Ciflorette’) by multidimensional gas chromatography and gas chromatography-olfactometry: In-depth analysis of Ciflorette strawberries. Flavour Frag. J. 2015, 30, 302–319. [Google Scholar] [CrossRef]
- Wang, J.; Sun, R.; Wang, G.; Chang, L.; Sun, J.; Zhong, C.; Dong, J.; Zhang, Y.; Ulrich, D. A comparative analysis on fruit characteristic aroma compounds in eight strawberry varieties (strains). J. Fruit Sci. 2018, 35, 967–976. [Google Scholar]
- Fu, L.; Liu, Z.; Sun, X.; Zhu, S. Study of Four Coating Materials of SPME Fiber on Extraction of Aroma Compounds in Strawberry. Sci. Agric. Sin. 2010, 43, 4473–4481. [Google Scholar]
- Pandit, S.S.; Chidley, H.G.; Kulkarni, R.S.; Pujari, K.H.; Gupta, V.S. Cultivar relationships in mango based on fruit volatile profile. Food Chem. 2009, 114, 363–372. [Google Scholar] [CrossRef]
- Qian, M.C.; Wang, Y. Seasonal Variation of Volatile Composition and Odor Activity Value of ‘Marion’ (Rubus spp. hyb) and ‘Thornless Evergreen’ (R. laciniatus L.) Blackberries. Food Chem. Toxicol. 2010, 70, C13–C20. [Google Scholar]
- Gemert, L.J.V. Odour Thresholds_Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter Partners BV: Zeist, The Netherlands, 2011. [Google Scholar]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 6th ed.; CRC Press: Boca Raton, FL, USA, 1975. [Google Scholar]
- Azodanlou, R.; Darbellay, C.; Luisier, J.L.; Villettaz, J.C.; Amado, R. Changes in flavour and texture during the ripening of strawberries. Eur. Food Res. Technol. 2004, 218, 167–172. [Google Scholar]
- Ulrich, D.; Komes, D.; Olbricht, K.; Hoberg, E. Diversity of aroma patterns in wild and cultivated Fragaria accessions. Genet. Resour. Crop. Evol. 2006, 54, 1185. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Y.; Tang, X.; Jin, W.; Han, Z. Differences in volatile ester composition between Fragaria×ananassa and F. Vesca and implications for strawberry aroma patterns. Sci. Hortic. 2013, 150, 47–53. [Google Scholar] [CrossRef]
- Urrutia, M.; Rambla, J.L.; Alexiou, K.G.; Granell, A.; Monfort, A. Genetic analysis of the wild strawberry (Fragaria vesca) volatile composition. Plant. Physiol. Bioch. 2017, 121, 99–117. [Google Scholar] [CrossRef]
- Schieberle, P.; Hofmann, T. Evaluation of the Character Impact Odorants in Fresh Strawberry Juice by Quantitative Measurements and Sensory Studies on Model Mixtures. J. Agric. Food Chem. 1997, 45, 227–232. [Google Scholar] [CrossRef]
- Gomes da Silva, M.D.; Chaves das Neves, H.J. Complementary use of hyphenated purge-and-trap gas chromatography techniques and sensory analysis in the aroma profiling of strawberries (Fragaria × ananassa). J. Agric. Food Chem. 1999, 47, 4568–4573. [Google Scholar] [CrossRef] [PubMed]
- Pelayo, C.; Ebeler, S.E.; Kader, A.A. Postharvest life and flavor quality of three strawberry cultivars kept at 5 °C in air or air + 20 kpa CO2. Postharvest Biol Tec. 2003, 27, 171–183. [Google Scholar] [CrossRef]
- Nuzzi, M.; Scalzo, R.L.; Testoni, A.; Rizzolo, A. Evaluation of Fruit Aroma Quality: Comparison between Gas Chromatography-Olfactometry (GC-O) and Odour Activity Value (OAV) Aroma Patterns of Strawberries. Food Anal. Method. 2008, 1, 270–282. [Google Scholar] [CrossRef]
- Wang, L.; Yin, K. Changes in aroma of ‘Darselect’ strawberry during development and characterization of the key aroma components. J. Fruit Sci. 2018, 35, 433–441. [Google Scholar]
- Zhang, X.; Jia, H. Changes in Aroma Volatile Compounds and Ethylene Production during “Hujingmilu” Peach (Prunus persica L.) Fruit Development. J. Plant. Physiol. Mol. Biol. 2005, 31, 41–46. [Google Scholar]
- Li, M.; Wang, L.; Zhang, Y.; Wang, J. Solid Phase Microextraction-GC-MS Analysis of Fruit Aroma Components of Peach Cultivars. Acta Hortic. Sin. 2006, 33, 1071–1074. [Google Scholar]
- Berna, A.Z.; Geysen, S.; Li, S.; Verlinden, B.E.; Lammertyn, J.; Nicolaï, B.M. Headspace fingerprint mass spectrometry to characterize strawberry aroma at super-atmospheric oxygen conditions. Postharvest Biol. Tecnol. 2007, 46, 230–236. [Google Scholar] [CrossRef]
Number | Varieties of Samplings | Source |
---|---|---|
S1 | Fragaria × ananassa ‘Benihoppe’ | NARO Institute of Vegetable and Tea Science (NIVTS), Tsukuba, Japan |
S2 | Fragaria × ananassa ‘Ssanta’ | Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China |
S3 | Fragaria × ananassa ‘Akihime’ | NIVTS, Tsukuba, Japan |
S4 | Fragaria × ananassa ‘Snow White’ | BAAFS, Beijing, China |
S5 | Fragaria × ananassa ‘Tokun’ | NIVTS, Tsukuba, Japan |
S6 | Fragaria × ananassa ‘Yuexin’ | Zhejiang Academy of Agricultural Sciences, Zhenjiang, China |
S7 | Fragaria × ananassa ‘Jingzangxiang’ | BAAFS, Beijing, China |
S8 | Fragaria × ananassa ‘Jingtaoxiang’ | BAAFS, Beijing, China |
S9 | Fragaria × ananassa ‘Jiuhong’ | Jiangsu Academy of Agricultural Sciences, Nanjing, China |
S10 | Fragaria × ananassa ‘Seolhyang’ | The Korean Strange Plant Research Institute, Daejeon, Korea |
S11 | Fragaria × ananassa ‘Sachinoka’ | NIVTS, Tsukuba, Japan |
S12 | Fragaria × ananassa ‘Hongyu’ | Hangzhou Academy of Agricultural Sciences, Hangzhou, China |
S13 | Fragaria × ananassa ‘Yanli’ | Shenyang Agricultural University, Shenyang, China |
S14 | Fragaria × ananassa ‘Zaoyu’ | Jiangsu Academy of Agricultural Sciences, Nanjing, China |
S15 | Fragaria × ananassa ‘Rongmei3′ | Zhenjiang Institute of Hilly Region Agricultural Sciences, Zhenjiang, China |
S16 | Fragaria × ananassa ‘106′ | Zhenjiang Institute of Hilly Region Agricultural Sciences, Zhenjiang, China |
Varieties | Compounds Relative Content (%) | |||||||
---|---|---|---|---|---|---|---|---|
Methyl Hexanoate | Octyl Acetate | Octyl Hexanoate | γ-Decalactone | Linalool | Nerolidol | Diethylene Glycol | Trans-2-Hexenal | |
S1 | 7.04 ± 1.22 | - | - | - | 4.69 ± 1.11 | 2.54 ± 0.34 | 23.98 ± 2.04 | 6.74 ± 1.07 |
S2 | 2.68 ± 0.14 | - | - | - | 26.32 ± 2.01 | 11.73 ± 1.21 | 0.49 ± 0.07 | 40.79 ± 3.52 |
S3 | 20.24 ± 2.74 | - | 0.84 ± 0.15 | 0.37 ± 0.01 | 5.05 ± 0.91 | 26.38 ± 2.10 | 0.39 ± 0.04 | 9.69 ± 1.30 |
S4 | 9.76 ± 1.31 | - | - | - | 13.61 ± 1.32 | 6.01 ± 0.79 | - | 30.02 ± 3.03 |
S5 | 6.87 ± 1.03 | 41.99 ± 3.67 | 13.63 ± 1.81 | 1.2 ± 0.13 | 0.96 ± 0.36 | - | - | 3.85 ± 0.94 |
S6 | 4.5 ± 0.56 | - | - | 0.71 ± 0.06 | 3.05 ± 1.20 | 12.36 ± 1.72 | - | 14.5 ± 1.82 |
S7 | 19.57 ± 3.01 | 16.75 ± 2.98 | 20.91 ± 2.24 | - | - | - | 2.05 ± 0.38 | 5.4 ± 0.88 |
S8 | 2.28 ± 0.21 | - | - | 33.63 ± 2.98 | 6.82 ± 1.62 | 29.73 ± 3.12 | 0.22 ± 0.01 | 8.5 ± 1.24 |
S9 | 23.2 ± 2.98 | - | - | - | 16.81 ± 2.01 | 19.69 ± 1.37 | - | 18.61 ± 2.03 |
S10 | 8.04 ± 1.14 | - | 0.14 ± 0.01 | 0.54 ± 0.08 | 11.69 ± 1.37 | 37.56 ± 3.75 | 0.89 ± 0.12 | 11.36 ± 1.50 |
S11 | 13.62 ± 1.67 | - | 0.48 ± 0.03 | 0.74 ± 0.04 | 12.16 ± 0.93 | 23.69 ± 2.42 | - | 15.81 ± 1.81 |
S12 | 16.32 ± 2.16 | - | - | 0.22 ± 0.01 | 3.28 ± 0.24 | 6.87 ± 1.05 | - | 32.25 ± 3.56 |
S13 | 1.9 ± 0.05 | - | - | 36.23 ± 3.25 | 7.96 ± 0.88 | 20.05 ± 2.01 | - | 3.87 ± 0.45 |
S14 | 4.11 ± 0.78 | 0.61 ± 0.02 | - | 49.23 ± 4.01 | 9.32 ± 1.13 | 3.28 ± 0.56 | - | 10.08 ± 1.40 |
S15 | 14.59 ± 1.43 | 1.47 ± 0.09 | 0.87 ± 0.03 | - | 23.4 ± 2.18 | 18.05 ± 1.68 | - | 9.93 ± 1.05 |
S16 | 20.42 ± 2.31 | - | - | - | 18.33 ± 2.04 | 29.03 ± 2.96 | - | 8.56 ± 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, L.; Ni, Y.; Wang, J.; Chen, Y.; Gao, H. Characteristic-Aroma-Component-Based Evaluation and Classification of Strawberry Varieties by Aroma Type. Molecules 2021, 26, 6219. https://doi.org/10.3390/molecules26206219
Sheng L, Ni Y, Wang J, Chen Y, Gao H. Characteristic-Aroma-Component-Based Evaluation and Classification of Strawberry Varieties by Aroma Type. Molecules. 2021; 26(20):6219. https://doi.org/10.3390/molecules26206219
Chicago/Turabian StyleSheng, Lixia, Yinan Ni, Jianwen Wang, Yue Chen, and Hongsheng Gao. 2021. "Characteristic-Aroma-Component-Based Evaluation and Classification of Strawberry Varieties by Aroma Type" Molecules 26, no. 20: 6219. https://doi.org/10.3390/molecules26206219
APA StyleSheng, L., Ni, Y., Wang, J., Chen, Y., & Gao, H. (2021). Characteristic-Aroma-Component-Based Evaluation and Classification of Strawberry Varieties by Aroma Type. Molecules, 26(20), 6219. https://doi.org/10.3390/molecules26206219