Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Torrefaction Process
3.2. Samples Analysis
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
WT1 | willow torrefied at 220 °C |
WT2 | willow torrefied at 240 °C |
WT3 | willow torrefied at 260 °C |
WT4 | willow torrefied at 280 °C |
WT5 | willow torrefied at 300 °C |
S0 | raw wheat straw |
ST1 | straw torrefied at 220 °C |
ST2 | straw torrefied at 240 °C |
ST3 | straw torrefied at 260 °C |
ST4 | straw torrefied at 280 °C |
ST5 | straw torrefied at 300 °C |
References
- Azzuni, A.; Breyer, C. Global energy security index and its application on national level. Energies 2020, 13, 2502. [Google Scholar] [CrossRef]
- Nyga-Łukaszewska, H.; Aruga, K.; Stala-Szlugaj, K. Energy security of poland and coal supply: Price analysis. Sustainability 2020, 12, 2541. [Google Scholar] [CrossRef]
- Loeschel, A.; Moslener, U.; Ruebellke, D.T.G. Indicators of energy security in industrialised countries. Energy Policy 2010, 38, 1665–1671. [Google Scholar] [CrossRef]
- Euracoal Statistics. 2019. Available online: https://euracoal.eu/info/euracoal-eu-statistics/ (accessed on 4 May 2020).
- Ymeri, P.; Gyuricza, C.; Fogarassy, C. Farmers’ attitudes towards the use of biomass as renewable energy—A case study from southeastern europe. Sustainability 2020, 12, 4009. [Google Scholar] [CrossRef]
- Lee, T.; Han, E.; Moon, U.-C.; Lee, K.Y. Supplementary control of air–fuel ratio using dynamic matrix control for thermal power plant emission. Energies 2020, 13, 226. [Google Scholar] [CrossRef]
- Ratte, J.; Fardet, E.; Mateos, D.; Hery, J.S. Mathematical modelling of a continuous biomass torrefaction reactor: TORSPYD (TM) column. Biomass Bioenergy 2011, 35, 3481–3495. [Google Scholar] [CrossRef]
- Uslu, A.; Faaij, A.P.C.; Bergman, P.C.A. Pre-treatment technologies and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction fast pyrolysis and pelletisation. Energy 2008, 33, 1206–1223. [Google Scholar] [CrossRef]
- Bergman, P.C.A.; Kiel, J.H.A. Torrefaction for biomass upgrading. Report ECN-RX-05-180. In Proceedings of the 14th European Biomass Conference & Exhibition, Paris, France, 17–21 October 2005. [Google Scholar]
- Chen, W.; Kuo, P. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 2010, 35, 2580–2586. [Google Scholar] [CrossRef]
- Bridgeman, T.G.; Jones, J.M.; Shield, I.; Williams, P.T. Torrefaction of reed canary grass wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 2008, 87, 844–856. [Google Scholar] [CrossRef]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubeira, F.; Pis, J.J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef]
- Medic, D.; Darr, M.; Shah, A.; Potter, B.; Zimmerman, J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 2012, 91, 147–154. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.; Sanadi, A.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 2011, 90, 3285–3290. [Google Scholar] [CrossRef]
- Styks, J.; Wróbel, M.; Frączek, J.; Knapczyk, A. Effect of compaction pressure and moisture content on quality parameters of perennial biomass pellets. Energies 2020, 13, 1859. [Google Scholar] [CrossRef]
- Popovicheva, O.; Ivanov, A.; Vojtisek, M. Functional factors of biomass burning contribution to spring aerosol composition in a megacity: Combined FTIR-PCA analyses. Atmosphere 2020, 11, 319. [Google Scholar] [CrossRef]
- Pérez, J.; Melgar, A.; Nel Benjumea, P. Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: An experimental study. Fuel 2012, 96, 487–496. [Google Scholar] [CrossRef]
- Duan, F.; Zhang, J.-P.; Chyang, C.-S.; Wang, Y.-J.; Tso, J. Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation. Fuel Process. Technol. 2014, 128, 28–35. [Google Scholar] [CrossRef]
- Amyotte, P.R. Some myths and realities about dust explosions. Process Saf. Environ. Prot. 2014, 92, 292–299. [Google Scholar] [CrossRef]
- Kauschinger, B.; Schroeder, S. Uncertainties in heat loss models of rolling bearings of machine tools. Procedia CIRP 2016, 46, 107–110. [Google Scholar] [CrossRef][Green Version]
- Haghighi Mood, S.; Hossein Golfeshan, A.; Tabatabaei, M.; Salehi Jouzani, G.; Hassan Najafi, G.; Gholami, M.; Ardjmand, M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 2013, 27, 77–93. [Google Scholar] [CrossRef]
- Hawksworth, S.; Rogers, R.; Proust, C.; Beyer, M.; Zakel, S.; Gummer, J. Ignition of explosive atmosphere by mechanical equipment. In Manchester Hazards XVIII. Process Safety-Sharing Best Practice; Icheme: London, UK, 2010; pp. 337–347. [Google Scholar]
- Kakitis, A.; Nulle, I. Electrostatic biomass mixing. Eng. Rural. Dev. 2009, 5, 247–252. [Google Scholar]
- Tumuluru, J.S.; Heikkila, D.J. Biomass grinding process optimization using response surface methodology and a hybrid genetic algorithm. Bioengineering 2019, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Dibble, C.J.; Shatova, T.A.; Jorgenson, J.L.; Stickel, J.J. Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion. Biotechnol. Progr. 2011, 27, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Dahn, C.J.; Dastidar, A.G. Requirements for a minimum ignition energy standard. Process. Saf. Prog. 2003, 22, 44–47. [Google Scholar] [CrossRef]
- Randeberg, E.; Eckhoff, R.K. Initiation of dust explosions by electric spark discharges tr iggered by the explosive dust cloud itself. J. Loss Prev. Process Ind. 2006, 19, 154–160. [Google Scholar] [CrossRef]
- Węgrzyn, A.; Zając, G. Selected aspects of research on energetic effectiveness of plant biomass production technology. Acta Agroph. 2008, 11, 799–806. [Google Scholar]
- Chin, K.; H’ng, P.; Go, W.; Wong, W.; Lim, T.; Maminski, M.; Paridah, M.; Luqman, A. Optimization of torrefaction conditions for high energy density solid biofuel from oil palm biomass and fast growing species available in Malaysia. Ind. Crops Prod. 2013, 49, 768–774. [Google Scholar] [CrossRef]
- Poudel, J.; Karki, S.; Oh, S.C. Valorization of waste wood as a solid fuel by torrefaction. Energies 2018, 11, 1641. [Google Scholar] [CrossRef]
- Werkelin, J.; Skrifvars, B.J.; Hupa, M. Ash-forming elements in four Scandinavian wood species. Part. 1. Summer harvest. Biomass Bioenergy 2005, 29, 451–466. [Google Scholar] [CrossRef]
- Bajcar, M.; Zaguła, G.; Saletnik, B.; Tarapatskyy, M.; Puchalski, C. Relationship between torrefaction parameters and physicochemical properties of torrefied products obtained from selected plant biomass. Energies 2018, 11, 2919. [Google Scholar] [CrossRef]
- Cashdollar, K.L. Overview of dust explosibility characteristics. J. Loss Prev. Process Ind. 2000, 13, 183–199. [Google Scholar] [CrossRef]
- Cordero, T.; Marquez, F.; Rodriquez-Mirasol, J.; Rodriguez, J.J. Predicting heating values of lignocellulosic and carbonaceous materials from proximate analysis. Fuel 2001, 80, 1567–1571. [Google Scholar] [CrossRef]
- Demirbaş, A. Calculation of higher heating values of biomass fuels. Fuel 1997, 76, 431–434. [Google Scholar] [CrossRef]
- Torrent, J.G.; Lazaro, E.C.; Wilén, C.; Rautalin, A. Biomass dust explosibility at elevated initial pres sures. Fuel 1998, 77, 1093–1097. [Google Scholar] [CrossRef]
- Holbrow, P. Dust explosion venting of small vessels and flameless venting. Process Saf. Environ. Prot. 2013, 91, 183–190. [Google Scholar] [CrossRef]
- Kok, M.V.; Ozgur, E. Thermal analysis and kinetics of biomass samples. Fuel Process. Technol. 2013, 106, 739–743. [Google Scholar] [CrossRef]
- Medina, C.h.; Phylaktou, H.N.; Sattar, H.; Andrews, G.E.; Gibbs, B.M. The development of an experimental method for the determination of the minimum explosible concentration of biomass powders. Biomass Bioenergy 2013, 53, 95–104. [Google Scholar] [CrossRef]
- Ragland, K.W.; Aerts, D.J.; Baker, A.J. Properties of wood for combustion analysis. Bioresour. Technol. 1991, 37, 161–168. [Google Scholar] [CrossRef]
- Eckhoff, R.K. Current status and expected future trends in dust explosion research. J. Loss Prev. Process Ind. 2005, 18, 225–237. [Google Scholar] [CrossRef]
- Taveau, J. Application of dust explosion protection systems. Procedia Eng. 2014, 84, 297–305. [Google Scholar] [CrossRef]
- Arnaldos, J.; Casal, J.; Planas-Cuchi, E. Prediction of flammability limits at reduced pressures. Chem. Eng. Sci. 2001, 56, 3829–3843. [Google Scholar] [CrossRef]
- Porowski, R.; Rudy, W.; Teodorczyk, A. Analysis of experimental methods for explosion limits of flammable liquids. Fire Saf. Technol. 2012, 4, 63–70. [Google Scholar]
- PN-EN 14034-2—Determination of Explosion Characteristics of Dust Clouds. Available online: www.pkn.pl (accessed on 4 May 2020).
Sample Availability: Samples of the compounds are not available from the authors. |
Parameters | W0 | WT1 | WT2 | WT3 | WT4 | WT5 | |
---|---|---|---|---|---|---|---|
x ± SD | |||||||
C | % | 48.05 c ± 0.1 | 48.23 c ± 0.35 | 49.12 bc ± 0.24 | 52.13 b ± 0.31 | 53.94 ab ± 0.22 | 55.46 a ± 0.14 |
H | 5.55 ab ± 0.03 | 5.87 a ± 0.03 | 5.94 a ± 0.08 | 4.42 c ± 0.12 | 4.06 cd ± 0.08 | 3.64 d ± 0.02 | |
N | 0.55 d ± 0.02 | 1.48 a ± 0.06 | 1.26 b ± 0.05 | 1.15 c ± 0.02 | 1.06 c ± 0.04 | 1.30 b ± 0.06 | |
Moisture Content | 10.31 a ± 0.1 | 9.12 b ± 0.07 | 8.74 bc ± 0.08 | 8.42 bc ± 0.1 | 8.16 c ± 0.17 | 7.96 c ± 0.1 | |
Ash Content | 3.15 b ± 0.1 | 3.17 b ± 0.1 | 3.38 ab ± 0.09 | 3.52 a ± 0.1 | 3.64 a ± 0.11 | 3.72 a ± 0.13 | |
Volatile Matter | 25.45 c ± 0.34 | 23.13 d ± 0.25 | 26.92 bc ± 0.19 | 31.63 b ± 0.41 | 40.27 a ± 0.21 | 44.91 a ± 0.31 | |
LHV | MJ·kg−1 | 17.51 c ± 0.25 | 19.24 b ± 0.06 | 20.14 b ± 0.12 | 21.39 a ± 0.22 | 21.42 a ± 0.12 | 21.46 a ± 0.09 |
S0 | ST1 | ST2 | ST3 | ST4 | ST5 | ||
C | % | 45.31 d ± 0.07 | 48.61 c ± 0.15 | 50.11 c ± 0.14 | 52.24 b ± 0.21 | 53.44 ab ± 0.18 | 55.08 a ± 0.04 |
H | 7.10 a ± 0.05 | 5.67 b ± 0.04 | 5.06 bc ± 0.05 | 4.22 c ± 0.12 | 4,09 c ± 0.08 | 3.54 d ± 0.02 | |
N | 0.15 d ± 0.01 | 1.05 c ± 0.06 | 1.08 c ± 0.03 | 1.18 b ± 0.02 | 1.11 b ± 0.04 | 1.07 a ± 0.06 | |
Moisture Content | 9.18 a ± 0.12 | 8.50 b ± 0.14 | 7.14 bc ± 0.14 | 6.32 c ± 0.11 | 5.87 c ± 0.11 | 4.52 d ± 0.1 | |
Ash Content | 4.56 d ± 0.12 | 6.27 c ± 0.13 | 6.94 c ± 0.16 | 8.66 b ± 0.1 | 9.04 a ± 0.09 | 9.25 a ± 0.1 | |
Volatile Matter | 17.70 d ± 0.19 | 20.48 c ± 0.3 | 28.74 bc ± 0.21 | 36.37 b ± 0.26 | 41.23 ab ± 0.24 | 47.86 a ± 0.25 | |
LHV | MJ·kg−1 | 17.59 d ± 0.1 | 18.77 c ± 0.09 | 19.04 c ± 0.17 | 19.75 b ± 0.31 | 20.14 b ± 0.15 | 20.96 a ± 0.31 |
Material | Pmax | (dp/dt)max | LEL—Lower Explosion Limit |
---|---|---|---|
[bar] | [bar·s−1] | [g·m3] | |
W0 | 7.2 | 261.3 | 500 |
WT1 | 7.0 | 268.1 | 500 |
WT2 | 7.9 | 272.4 | 500 |
WT3 | 8.2 | 279.6 | 500 |
WT4 | 8.6 | 284.3 | 250 |
WT5 | 9.2 | 296.6 | 250 |
S0 | 7,3 | 201,4 | 500 |
ST1 | 7.5 | 209.6 | 500 |
ST2 | 7.7 | 214.9 | 500 |
ST3 | 8.1 | 219.5 | 500 |
ST4 | 8.3 | 224.3 | 500 |
ST5 | 8.8 | 231.6 | 250 |
Explosivity Class | Value Kst max [bar*s−1] |
---|---|
St 1 | ≤200 |
St 2 | 200–300 |
St 3 | >300 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajcar, M.; Saletnik, B.; Zaguła, G.; Puchalski, C. Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity. Molecules 2020, 25, 3525. https://doi.org/10.3390/molecules25153525
Bajcar M, Saletnik B, Zaguła G, Puchalski C. Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity. Molecules. 2020; 25(15):3525. https://doi.org/10.3390/molecules25153525
Chicago/Turabian StyleBajcar, Marcin, Bogdan Saletnik, Grzegorz Zaguła, and Czesław Puchalski. 2020. "Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity" Molecules 25, no. 15: 3525. https://doi.org/10.3390/molecules25153525
APA StyleBajcar, M., Saletnik, B., Zaguła, G., & Puchalski, C. (2020). Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity. Molecules, 25(15), 3525. https://doi.org/10.3390/molecules25153525