Tuning LiBH4 for Hydrogen Storage: Destabilization, Additive, and Nanoconfinement Approaches
Abstract
:1. Introduction
2. Destabilized MgH2-2LiBH4 System: Li-RHC
3. Metal and Metal Hydride Added LiBH4
4. Destabilization of LiBH4 by Rare Earth (RE) Metal Hydrides
5. Nanoconfinement of LiBH4
5.1. Outline
5.2. Techniques
5.3. Impregnation
5.4. Matrix
5.5. Mixture
5.6. Performances
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Züttel, A.; Rentsch, S.; Fischer, P.; Wenger, P.; Sudan, P.; Mauron, P.; Emmenegger, C. Hydrogen storage properties of LiBH4. J. Alloys Compd. 2003, 356, 515–520. [Google Scholar] [CrossRef]
- Grochala, W.; Edwards, P.P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 2004, 104, 1283–1315. [Google Scholar] [CrossRef]
- Orimo, S.I.; Nakamori, Y.; Eliseo, J.R.; Züttel, A.; Jensen, C.M. Complex hydrides for hydrogen storage. Chem. Rev. 2007, 107, 4111–4132. [Google Scholar] [CrossRef] [PubMed]
- Li, H.W.; Yan, Y.; Orimo, S.I.; Züttel, A.; Jensen, C.M. Recent progress in metal borohydrides for hydrogen storage. Energies 2011, 4, 185–214. [Google Scholar] [CrossRef]
- Qiu, S.; Chu, H.; Zou, Y.; Xiang, C.; Xua, F.; Sun, L. Light metal borohydrides/amides combined hydrogen storage systems: Composition, structure and properties. J. Mater. Chem. A 2017, 5, 25112–25130. [Google Scholar] [CrossRef]
- Lai, Q.; Aguey-Zinsou, K.-F. Borohydrides as solid-state hydrogen storage materials: Past, current approaches and future perspectives. Gen. Chem. 2018, 4, 180017. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Miyaoka, H.; Miyaoka, H.; Ichikawa, T.; Kojima, Y. Review on ammonia absorption materials: Metal hydrides, halides, and borohydrides. ACS Appl. Energy Mater. 2018, 1, 232–242. [Google Scholar] [CrossRef]
- Grinderslev, J.B.; Møller, K.T.; Bremholm, M.; Jensen, T.R. Trends in synthesis, crystal structure, and thermal and magnetic properties of rare-earth metal borohydrides. Inorg. Chem. 2019, 58, 5503–5517. [Google Scholar] [CrossRef] [PubMed]
- Filinchuk, Y.; Chernyshov, D.; Dmitriev, V. Light metal borohydrides: Crystal structures and beyond. Z. Krist. Int. J. Struct. Phys. Chem. Asp. Cryst. Mater. 2008, 223, 649–659. [Google Scholar]
- Chen, P.; Zhu, M. Recent progress in hydrogen storage. Mater. Today 2008, 11, 36–43. [Google Scholar] [CrossRef]
- George, L.; Saxena, S.K. Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali-earth elements: A review. Int. J. Hydrogen Energy 2010, 35, 5454–5470. [Google Scholar] [CrossRef]
- Hagemann, H.; Černý, R. Synthetic approaches to inorganic borohydrides. Dalton Trans. 2010, 39, 6006–6012. [Google Scholar] [CrossRef] [PubMed]
- De Jongh, P.E.; Adelhelm, P. Nanosizing and nanoconfinement: New strategies towards meeting hydrogen storage goals. ChemSusChem 2010, 3, 1332–1348. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.K.; Besenbacher, F.; Jensen, T.R. Nanoconfined hydrides for energy storage. Nanoscale 2011, 3, 2086–2098. [Google Scholar] [CrossRef] [PubMed]
- Rude, L.H.; Nielsen, T.K.; Ravnsbæk, D.B.; Bösenberg, U.; Ley, M.B.; Richter, B.; Arnbjerg, L.M.; Dorbheim, M.; Filinchuk, Y.; Besenbacher, F.; et al. Tailoring properties of borohydrides for hydrogen storage: A review. Phys. Status Solidi A 2011, 208, 1754–1773. [Google Scholar] [CrossRef]
- Ley, M.B.; Jepsen, L.H.; Lee, Y.S.; Cho, Y.W.; von Colbe, J.M.B.; Dornheim, M.; Rokni, M.; Jensen, J.O.; Sloth, M.; Filinchuk, Y.; et al. Complex hydrides for hydrogen storage—New perspectives. Mater. Today 2014, 17, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Gregory, D.H. Recent advances in the use of sodium borohydride as a solid state hydrogen store. Energies 2015, 8, 430–453. [Google Scholar] [CrossRef]
- Cerný, R.; Schouwink, P. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2015, 71, 619–640. [Google Scholar] [CrossRef]
- Hansen, B.R.S.; Paskevicius, M.; Li, H.-W.; Akiba, E.; Jensen, T.R. Metal boranes: Progress and applications. Coord. Chem. Rev. 2016, 323, 60–70. [Google Scholar] [CrossRef]
- Mohtadi, R.; Remhof, A.; Jena, P. Complex metal borohydrides: Multifunctional materials for energy storage and conversion. J. Phys. Condens. Matter 2016, 28, 353001. [Google Scholar] [CrossRef]
- Paskevicius, M.; Jepsen, L.H.; Schouwink, P.; Cerný, R.; Ravnsbæk, D.B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T.R. Metal borohydrides and derivatives—Synthesis, structure and properties. Chem. Soc. Rev. 2017, 46, 1565–1634. [Google Scholar] [CrossRef] [PubMed]
- Gharib Doust, S.P.; Ravnsbæk, D.B.; Cerný, R.; Jensen, T.R. Synthesis, structure and properties of bimetallicsodium rare-earth (RE) borohydrides, NaRE(BH4)4, RE = Ce, Pr, Er or Gd. Dalton Trans. 2017, 46, 13421–13431. [Google Scholar] [CrossRef] [PubMed]
- Puszkiel, J.; Garroni, S.; Milanese, C.; Gennari, F.; Klassen, T.; Dornheim, M.; Pistidda, C. Tetrahydroborates: Development and potential as hydrogen storage medium. Inorganics 2017, 5, 74. [Google Scholar] [CrossRef] [Green Version]
- Schneemann, A.; White, J.L.; Kang, S.Y.; Jeong, S.; Wan, L.F.; Cho, E.S.; Heo, T.W.; Prendergast, D.; Urban, J.J.; Wood, B.C.; et al. Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 2018, 118, 10775–10839. [Google Scholar] [CrossRef] [PubMed]
- Milansese, C.; Jensen, T.R.; Pistidda, C.; Dornheim, M.; Yang, H.; Lombardo, L.; Züttel, A.; Filinchuk, Y.; Ngene, P.; de Jongh, P.E.; et al. Complex hydrides for energy storage. Int. J. Hydrogen Energy 2019, 44, 7860–7874. [Google Scholar] [CrossRef] [Green Version]
- Rueda, M.; Sanz-Moral, L.M.; Martín, Á. Innovative methods to enhance the properties of solid hydrogen storage materials based on hydrides through nanoconfinement: A review. J. Supercrit. Fluids 2018, 141, 198–217. [Google Scholar] [CrossRef]
- Ding, Z.; Li, S.; Zhou, Y.; Chen, Z.; Zhang, F.; Wug, P.; Ma, W. LiBH4 for hydrogen storage: New perspectives. Nano Mat. Sci. 2019. [Google Scholar] [CrossRef]
- HSC. Chemistry9.7, for Windows; Outotec: Finland, Espoo, 2017. [Google Scholar]
- Vajo, J.J.; Skeith, S.L. Reversible storage of hydrogen in destabilized LiBH4. J. Phys. Chem. B 2005, 109, 3719–3722. [Google Scholar] [CrossRef]
- Barkhordarian, G.; Klassen, T.; Bormann, R. Wasserstoff Speicherendes Kompositmaterial Sowie eine Vorrichtung zur Reversiblen Speicherung von Wasserstoff. German Pub. No. DE 10 2004 061 286 A1, 22 June 2006. [Google Scholar]
- Walker, G. Multicomponent hydrogen storage systems. In Solid—State Hydrogen Storage—Materials and Chemistry, 1st ed.; Walker, G., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2008; pp. 154–196. [Google Scholar]
- Blach, T.; Gray, E. Sieverts apparatus and methodology for accurate determination of hydrogen uptake by light-atom hosts. J. Alloys Compd. 2007, 446, 692–697. [Google Scholar] [CrossRef]
- Bösenberg, U.; Doppiu, S.; Mosegaard, L.; Barkhordarian, G.; Eigen, N.; Borgschulte, A.; Jensen, T.R.; Cerenius, Y.; Gutfleisch, O.; Klassen, T.; et al. Hydrogen sorption properties of MgH2–LiBH4 composites. Acta Mater. 2007, 55, 3951–3958. [Google Scholar] [CrossRef]
- Pinkerton, F.E.; Meyer, M.S.; Meisner, G.P.; Balogh, M.P.; Vajo, J.J. Phase boundaries and reversibility of LiBH4–MgH2 hydrogen storage material. J. Phys. Chem. C 2007, 111, 12881–12885. [Google Scholar] [CrossRef]
- Wan, X.; Markmaitree, T.; Osborn, W.; Shaw, L.L. Nanoengineering-enabled solid-state hydrogen uptake and release in the LiBH4 plus MgH2 system. J. Phys. Chem. C 2008, 112, 18232–18243. [Google Scholar] [CrossRef]
- Yu, X.B.; Granta, D.M.; Walker, G.S. A new dehydrogenation mechanism for reversible multicomponent borohydride systems—The role of Li–Mg alloys. Chem. Commun. 2006, 37, 3906–3908. [Google Scholar] [CrossRef] [PubMed]
- Bosenberg, U.; Ravnsbaek, D.B.; Hagemann, H.; D’Anna, V.; Minella, C.B.; Pistidda, C.; van Beek, W.; Jensen, T.R.; Bormann, R.; Dornheim, M. Pressure and temperature influence on the desorption pathway of the LiBH4−MgH2 composite system. J. Phys. Chem. C 2010, 114, 15212–15217. [Google Scholar] [CrossRef]
- Yan, Y.; Li, H.-W.; Maekawa, H.; Miwa, K.; Towada, S.; Orimo, S. Formation of intermediate compound Li2B12H12 during the dehydrogenation process of the LiBH4–MgH2 System. J. Phys. Chem. C 2011, 115, 19419–19423. [Google Scholar] [CrossRef]
- Puszkiel, J.A.; Castro Riglos, M.V.; Ramallo-López, J.M.; Mizrahi, M.; Karimi, F.; Santoru, A.; Hoell, A.; Gennari, F.C.; Arneodo Larochette, P.; Pistidda, C.; et al. A novel catalytic route for hydrogenation–dehydrogenation of 2LiH + MgB2 via in situ formed core—Shell LixTiO2 nanoparticles. J. Mater. Chem. A 2017, 5, 12922–12933. [Google Scholar] [CrossRef]
- Jepsen, J.; Milanese, C.; Puszkiel, J.; Girella, A.; Schiavo, B.; Lozano, G.A.; Capurso, G.; Bellosta von Colbe, J.M.; Marini, A.; Kabelac, S.; et al. Fundamental material properties of the 2LiBH4-MgH2 reactive hydride composite for hydrogen storage: (I) thermodynamic and heat transfer properties. Energies 2018, 11, 1081. [Google Scholar] [CrossRef] [Green Version]
- Orimo, S.-I.; Nakamori, Y.; Kitahara, G.; Miwa, K.; Ohba, N.; Towata, S.; Züttel, A. Dehydriding and rehydriding reactions of LiBH4. J. Alloys Compd. 2005, 404, 427–430. [Google Scholar] [CrossRef]
- Barkhordarian, G.; Klassen, T.; Dornheim, M.; Bormann, R.B. Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides. J. Alloys Compd. 2007, 440, L18–L21. [Google Scholar] [CrossRef]
- Nakagawa, T.; Ichikawa, T.; Hanada, H.; Kojima, Y.; Fujii, H. Thermal analysis on the Li–Mg–B–H systems. J. Alloys Compd. 2007, 446, 306–309. [Google Scholar] [CrossRef]
- Fedneva, E.M.; Alpatova, V.L.; Mikheeva, V.I. LiBH4 complex hydride material. Russ. J. Inorg. Chem. 1964, 9, 826–827. [Google Scholar]
- Höne, G.; Hemminger, W.; Flammersheim, H.J. Differential Scanning Calorimetry, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Price, T.E.C.; Grant, D.M.; Legrand, V.; Walker, G.S. Enhanced kinetics for the LiBH4: MgH2 multi-component hydrogen storage system—The effects of stoichiometry and decomposition environment on cycling behavior. Int. J. Hydrogen Energy 2010, 35, 4154–4161. [Google Scholar] [CrossRef] [Green Version]
- Ozolins, V.; Majzoub, E.H.; Wolverton, C.J. First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system. J. Am. Chem. Soc. 2009, 131, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Bösenberg, U.; Pistidda, C.; Tolkeiehn, M.; Busch, N.; Salsan, I.; Suarez-Alcantara, K.; Arendarska, A.; Klassen, T.; Dornheim, M. Characterization of metal hydrides by in-situ XRD. Int. J. Hydrogen Energy 2014, 39, 9899–9903. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.B.; Shim, J.H.; Park, S.H.; Choi, I.S.; Oh, K.H.; Cho, Y.W. Dehydrogenation reaction pathway of the LiBH4−MgH2 composite under various pressure conditions. J. Phys. Chem. C 2015, 119, 9714–9720. [Google Scholar] [CrossRef]
- Kostka, J.; Lohstroh, W.; Fichtner, M.; Hahn, H. Diborane release from LiBH4/Silica-Gel mixtures and the effect of additives. J. Phys Chem. C 2007, 111, 14026–14029. [Google Scholar] [CrossRef]
- Friedrichs, O.; Remhof, A.; Hwang, S.-J.; Züttel, A. Role of Li2B12H12 for the Formation and Decomposition of LiBH4. Chem. Mater. 2010, 22, 3265–3268. [Google Scholar] [CrossRef]
- Mauron, P.; Buchter, F.; Friedrichs, O.; Remhof, A.; Bielmann, M.; Zwicky, C.N.; Züttel, A. Stability and reversibility of LiBH4. J. Phys. Chem. B 2008, 112, 906–910. [Google Scholar] [CrossRef]
- Kim, K.-B.; Shim, J.-H.; Oh, K.H.; Cho, Y. Role of early-stage atmosphere in the dehydrogenation reaction of the LiBH4–YH3 composite. J. Phys. Chem. C 2013, 117, 8028–8031. [Google Scholar] [CrossRef]
- Kim, K.-B.; Shim, J.-H.; Cho, Y.-H.; Oh, K.H. Pressure-enhanced dehydrogenation reaction of the LiBH4-YH3 composite. Chem. Commun. 2011, 47, 9831–9833. [Google Scholar] [CrossRef]
- Ohba, N.; Miwa, K.; Aoki, M.; Noritake, T.; Towata, S.; Züttel, A. First-principles study on the stability of intermediate compounds of LiBH4. Phys. Rev. B 2006, 74, 075110. [Google Scholar] [CrossRef] [Green Version]
- Cova, F.; Rönnebro, E.W.C.; Choi, Y.J.; Gennari, F.C.; Arneodo Larochette, P. New insights into the thermodynamic behavior of 2LiBH4−MgH2 composite for hydrogen storage. J. Phys. Chem. C 2015, 119, 15816–15822. [Google Scholar] [CrossRef] [Green Version]
- Bösenberg, U.; Kim, J.W.; Gosslar, D.; Eigen, N.; Jensen, T.R.; von Colbe, J.M.B.; Zhou, Y.; Dahms, M.; Kim, D.H.; Gunther, R.; et al. Role of additives in LiBH4–MgH2 reactive hydride composites for sorption kinetics. Acta Mater. 2010, 58, 3381–3389. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Ma, L.; Fang, Z.; Kang, X.; Wang, P. Improved hydrogen storage property of Li–Mg–B–H system by milling with titanium trifluoride. Energy Environ. Sci. 2009, 2, 120–123. [Google Scholar] [CrossRef]
- Deprez, E.; Muñoz-Márquez, M.A.; Roldán, M.A.; Prestipino, C.; Palomares, F.J.; Bonatto Minella, C.; Bösenberg, U.; Dornheim, M.; Bormann, R. Oxidation state and local structure of Ti-based additives in the reactive hydride composite 2LiBH4 + MgH2. J. Phys. Chem. C 2010, 114, 3309–3317. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Morin, F.; Huot, J. The effects of Ti-based additives on the kinetics and reactions in LiH–MgB2 hydrogen storage system. Int. J. Hydrogen Energy 2011, 36, 5425–5430. [Google Scholar] [CrossRef]
- Xiao, X.; Shao, J.; Chen, L.; Kou, H.; Fan, X.; Deng, S.; Zhang, L.; Li, S.; Ge, H.; Wang, Q. Effects of NbF5 addition on the de/rehydrogenation properties of 2LiBH4/MgH2 hydrogen storage system. Int. J. Hydrogen Energy 2012, 37, 13147–13154. [Google Scholar] [CrossRef]
- Shao, J.; Xiao, X.Z.; Chen, L.X.; Fan, X.L.; Han, L.Y.; Li, S.Q.; Ge, H.W.; Wang, Q.D. Enhanced hydriding-dehydriding performance of a LiH−MgB2 composite by the catalytic effects of Ni−B nanoparticles. J. Mater. Chem. A 2013, 1, 10184–10192. [Google Scholar] [CrossRef]
- Puszkiel, J.A.; Gennari, F.C.; Arneodo Larochette, P.; Ramallo-López, J.M.; Vainio, U.; Karimi, F.; Pranzas, P.K.; Troiani, H.; Pistidda, C.; Jepsen, J.; et al. Effect of Fe additive on the hydrogenation-dehydrogenation properties of 2LiH + MgB2/2LiBH4 + MgH2 system. J. Power Sources 2015, 284, 606–616. [Google Scholar] [CrossRef]
- Karimi, F.C.; Riglos, M.V.; Santoru, A.; Hoell, A.; Raghuwanshi, V.S.; Milanese, C.; Bergemann, N.; Pistidda, C.; Nolis, P.; Baro, M.D.; et al. In Situ formation of TiB2 nanoparticles for enhanced dehydrogenation/hydrogenation reaction kinetics of LiBH4−MgH2 as a Reversible solid-state hydrogen storage composite system. J. Phys. Chem. C 2018, 122, 11671–11681. [Google Scholar] [CrossRef]
- Le, T.-T.; Pistidda, C.; Puszkiel, J.; Castro Riglos, M.V.; Karimi, F.; Skibsted, J.; GharibDoust, S.P.; Richter, B.; Emmler, T.; Milanese, C.; et al. Design of a nanometric AlTi additive for MgB2-based reactive hydride composites with superior kinetic properties. J. Phys. Chem. C 2018, 122, 7642–7655. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, J.; Milanese, C.; Puszkiel, J.; Girella, A.; Schiavo, B.; Lozano, G.A.; Capurso, G.; Bellosta von Colbe, J.M.; Marini, A.; Kabelac, S.; et al. Fundamental material properties of the 2LiBH4-MgH2 reactive hydride composite for hydrogen storage: (II) kinetic properties. Energies 2018, 11, 1170. [Google Scholar] [CrossRef] [Green Version]
- Xian, K.; Gao, M.; Li, Z.; Gu, J.; Shen, Y.; Wang, S.; Yao, Z.; Liu, Y.; Pan, H. Superior kinetic and cyclic performance of a 2D titanium carbide incorporated 2LiH + MgB2 composite toward highly reversible hydrogen storage. ACS Appl. Energy Mater. 2019, 2, 4853–4864. [Google Scholar] [CrossRef]
- Puszkiel, J.A. Tailoring the kinetic behavior of hydride forming materials for hydrogen storage. In Gold Nanoparticles—Reaching New Heights, 1st ed.; IntechOpen: London, UK, 2019; ISBN 978-1-78984-957-8. [Google Scholar]
- Puszkiel, J.A.; Castro Riglos, M.V.; Karimi, F.; Santoru, A.; Pistidda, C.; Klassen, T.; Bellosta von Colbec, J.M.; Dornheim, M. Changing the dehydrogenation pathway of LiBH4–MgH2 via nanosized lithiated TiO2. Phys. Chem. Chem. Phys. 2017, 19, 7455–7460. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.W.; Shim, J.-H.; Lee, B.-J. Thermal destabilization of binary and complex metal hydrides by chemical reaction: A thermodynamic analysis. Calphad 2006, 30, 65–69. [Google Scholar] [CrossRef]
- Siegel, D.J.; Wolverton, C.; Ozoliņš, V. Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures. Phys. Rev. B 2007, 76, 134102. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Sudik, A.; Wolverton, C. Destabilizing LiBH4 with a Metal (M = Mg, Al, Ti, V, Cr or Sc) or Metal hydride (MH2 = MgH2, TiH2 or CaH2). J. Phys. Chem. C 2007, 111, 19134–19140. [Google Scholar] [CrossRef]
- Au, M.; Jurgensen, A.; Zeigle, K. Modified lithium borohydrides for reversible hydrogen storage. J. Phys. Chem. B 2006, 110, 26482–26487. [Google Scholar] [CrossRef]
- Kang, X.D. Reversible hydrogen storage in LiBH4 destabilized by milling with Al. Appl. Phys. A 2007, 89, 963–966. [Google Scholar] [CrossRef]
- Friedrichs, O.; Kim, J.W.; Remhof, A.; Buchter, F.; Borgschulte, A.; Wallacher, D.; Cho, Y.W.; Fichtner, M.; Oh, K.H.; Züttel, A. The effect of Al on the hydrogen sorption mechanism of LiBH4. Phys. Chem. Chem. Phys. 2009, 11, 1515–1520. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, O.; Zhang, J.; Liu, S.S.; Sun, L.X. The dehydrogenation reactions and kinetics of 2LiBH4-Al composite. J. Phys. Chem. C 2009, 113, 18424–18430. [Google Scholar] [CrossRef]
- Hansen, B.R.S.; Ravnsbæk, D.B.; Reed, D.; Book, D.; Gundlach, C.; Skibsted, J.; Jensen, T.R. Hydrogen storage capacity loss in a LiBH4−Al composite. J. Phys. Chem. C 2013, 117, 7423–7432. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lu, J.; Sohn, H.Y.; Fang, Z.Z. Reaction Mechanisms in the Li3AlH6/LiBH4 and Al/LiBH4 Systems for Reversible Hydrogen Storage. Part 1: H Capacity and Role of Al. J. Phys. Chem. C 2011, 115, 6040–6604. [Google Scholar] [CrossRef]
- Remhof, A.; Friedrichs, O.; Buchter, F.; Mauron, P.; Kim, J.W.; Oh, K.H.; Buchsteiner, A.; Wallacher, D.; Züttel, A. Hydrogen cycling behavior of LiBD4/Al studied by in situ neutron diffraction. J. Alloys Compd. 2009, 484, 654–659. [Google Scholar] [CrossRef]
- He, Q.; Zhu, D.; Wu, X.; Dong, D.; Xu, M.; Tong, Z. Hydrogen desorption properties of LiBH4/xLiAlH4 (x = 0.5, 1, 2) composites. Molecules 2019, 24, 1861. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Zhu, D.; Wu, X.; Dong, D.; Jiang, X.; Xu, M. The Dehydrogenation mechanism and reversibility of LiBH4 doped by active Al derived from AlH3. Metals 2019, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Pinkerton, F.E.; Meyer, M.S. Reversible hydrogen storage in the lithium borohydride—Calcium hydride coupled system. J. Alloys Compd. 2008, 464, L1–L4. [Google Scholar] [CrossRef]
- Jin, S.A.; Lee, Y.S.; Shim, J.H.; Cho, Y.W. Reversible hydrogen storage in LiBH4-MH2 (M = Ce, Ca) composites. J. Phys. Chem. C 2008, 112, 9520–9524. [Google Scholar] [CrossRef]
- Lim, J.H.; Shim, J.H.; Lee, Y.S.; Cho, T.W.; Lee, J. Dehydrogenation behavior of LiBH4/CaH2 composite with NbF5. Scr. Mater. 2008, 59, 1251–1254. [Google Scholar] [CrossRef]
- Lim, J.H.; Shim, J.H.; Lee, Y.S.; Suh, J.Y.; Cho, Y.W.; Lee, J. Rehydrogenation and cycle studies of LiBH4-CaH2 composite. Int. J. Hydrogen Energy 2010, 35, 6578–6582. [Google Scholar] [CrossRef]
- Ibikunle, A.; Goudy, A.J.; Yang, H. Hydrogen storage in a CaH2/LiBH4 destabilized metal hydride system. J. Alloys Compd. 2009, 475, 110–115. [Google Scholar] [CrossRef]
- Ibikunle, A.A.; Sabitu, S.T.; Goudy, A.J. Kinetics and modeling studies of the CaH2/LiBH4, MgH2/LiBH4, Ca(BH4)2 and Mg(BH4)2 systems. J. Alloys Compd. 2013, 556, 45–50. [Google Scholar] [CrossRef]
- Alapati, S.V.; Johnson, J.K.; Sholl, D.S. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. J. Phys. Chem. B 2006, 110, 8769–8776. [Google Scholar] [CrossRef]
- Purewal, J.; Hwang, S.-J.; Bowman, R.C., Jr.; Rönnebro, E.; Fultz, B.; Ahn, C. Hydrogen sorption behavior of the ScH2-LiBH4 system: Experimental assessment of chemical destabilization effects. J. Phys. Chem. C 2008, 112, 8481–8485. [Google Scholar] [CrossRef]
- Mauron, P.; Bielmann, M.; Remhof, A.; Züttel, A.; Shim, J.-K.; Cho, Y.W. Stability of the LiBH4/CeH2 composite system determined by dynamic pct measurements. J. Phys. Chem. C 2010, 114, 16801–16805. [Google Scholar] [CrossRef]
- Shim, J.-H.; Lim, J.-H.; Rather, S.-U.; Lee, Y.-S.; Reed, D.; Kim, Y.; Book, D.; Cho, Y.W. Effect of hydrogen back pressure on dehydrogenation behavior of LiBH4-based reactive hydride composites. J. Phys. Chem. Lett. 2010, 1, 59–63. [Google Scholar] [CrossRef]
- Shim, J.-H.; Lee, Y.-S.; Suh, J.-Y.; Cho, W.; Han, S.S.; Cho, Y.W. Thermodynamics of the dehydrogenation of the LiBH4-YH3 composite: Experimental and theoretical studies. J. Alloys Compd. 2012, 510, L9–L12. [Google Scholar] [CrossRef]
- Gennari, F.C.; Fernandez Albanesi, L.; Puszkiel, J.A.; ArneodoLarochette, P. Reversible hydrogen storage from 6LiBH4-MCl3 (M = Ce, Gd) composites by In Situ formation of MH2. Int. J. Hydrogen Energy 2011, 36, 563–570. [Google Scholar] [CrossRef]
- Gennari, F.C. Destabilization of LiBH4 by MH2 (M = Ce, La) for hydrogen storage: Nanostructural effects on the hydrogen sorption kinetics. Int. J. Hydrogen Energy 2011, 36, 15231–15238. [Google Scholar] [CrossRef]
- Gennari, F.C. Improved hydrogen storage reversibility of LiBH4 destabilized by Y(BH4)3 and YH3. Int. J. Hydrogen Energy 2012, 37, 18895–18903. [Google Scholar] [CrossRef]
- Cai, W.; Wang, H.; Sun, D.; Zhu, M. Nanosize-controlled reversibility for a destabilizing reaction in the LiBH4−NdH2+x system. J. Phys. Chem. C 2012, 117, 9566–9572. [Google Scholar] [CrossRef]
- Olsen, J.E.; Frommen, C.; Jensen, T.R.; Sørby, M.H.; Hauback, B.C. Structure and thermal properties of composites with RE-borohydrides (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb or Lu) and LiBH4. RSC Adv. 2014, 4, 1570–1582. [Google Scholar] [CrossRef]
- Frommen, M.; Heere, M.D.; Riktor, M.H.; Sørby, M.H.; Hauback, B.C. Hydrogen storage properties of rare-earth (RE) borohydrides (RE = La, Er)in composite mixtures with LiBH4 and LiH. J. Alloys Compd. 2015, 645, S155–S159. [Google Scholar] [CrossRef] [Green Version]
- Heere, M.; GharibDoust, S.H.P.; Brighi, M.; Frommen, C.; Sørby, M.H.; Černý, R.; Jensen, T.R.; Hauback, B.C. Hydrogen sorption in erbium borohydride composite mixtures with LiBH4 and/or LiH. Inorganics 2017, 5, 31–45. [Google Scholar] [CrossRef]
- Manchester, F.D. Phase Diagrams of Binary Hydrogen Alloys; ASM International, the Materials Information Society: Materials Park, OH, USA, 2000. [Google Scholar]
- Gennari, F.C.; Andrade-Gamboa, J.J. A Systematic approach to the synthesis, thermal stability and hydrogen storage properties of rare-earth borohydrides. In Emerging Materials for Energy Conversion and Storage, 1st ed.; Cheong, K.Y., Impellizzeri, G., Fraga, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 4, pp. 429–459. ISBN 9780128137949. [Google Scholar]
- Frommen, M.; Sørby, M.H.; Heere, M.; Humphries, T.D.; Olsen, J.E.; Hauback, B.C. Rare earth borohydrides—Crystal structures andthermal properties. Energies 2017, 10, 2115. [Google Scholar] [CrossRef] [Green Version]
- Gennari, F.C.; Esquivel, M.R. Synthesis and dehydriding process of crystalline Ce(BH4)3. J. Alloys Compd. 2009, 485, L47–L51. [Google Scholar] [CrossRef]
- Andrade-Gamboa, J.; Puszkiel, J.A.; Fernández-Albanesi, L.; Gennari, F.C. A novel polymorph of gadolinium tetrahydroborate produced by mechanical milling. Int. J. Hydrogen Energy 2010, 35, 10324–10328. [Google Scholar] [CrossRef]
- Zhang, B.J.; Liu, B.H.; Li, Z.P. Destabilization of LiBH4 by (Ce,La) (Cl,F)3 for hydrogen storage. J. Alloys Compd. 2011, 509, 751–757. [Google Scholar] [CrossRef]
- Gennari, F.C. Mechanochemical synthesis of erbium borohydride: Polymorphism, thermal decomposition and hydrogen storage. J. Alloys Compd. 2013, 581, 192–195. [Google Scholar] [CrossRef]
- Olsen, J.E.; Frommen, C.; Sørby, M.H.; Hauback, B.C. Crystal structures and properties of solvent-free LiYb(BH4)4-xClx, Yb(BH4)3 and Yb(BH4)2-xClx. RSC Adv. 2013, 3, 10764–10774. [Google Scholar] [CrossRef]
- Gennari, F.C.; Albanesi, L.F.; Ríos, I. Synthesis and thermal stability of Zr(BH4)4 and Zr(BD4)4 produced by mechanochemical processing. Inorg. Chim. Acta 2009, 362, 3731–3737. [Google Scholar] [CrossRef]
- Liu, X.; Peaslee, D.; Jost, C.Z.; Baumann, T.F.; Majzoub, E.H. Systematic pore-size effects of nanoconfinement of LiBH4: Elimination of diborane release and tunable behavior for hydrogen storage applications. Chem. Mater. 2011, 23, 1331–1336. [Google Scholar] [CrossRef]
- Suwarno; Ngene, P.; Nale, A.; Eggenhuisen, T.M.; Oschatz, M.; Embs, J.P.; Remhof, A.; de Jongh, P.E. Confinement effects for lithium borohydride: Comparing silica and carbon scaffolds. J. Phys. Chem. C 2017, 121, 4197–4205. [Google Scholar] [CrossRef] [PubMed]
- Gasnier, A.; Gennari, F.C. Graphene entanglement in a mesoporous resorcinol–formaldehyde matrix applied to the nanoconfinement of LiBH4 for hydrogen storage. RSC Adv. 2017, 7, 27905–27912. [Google Scholar] [CrossRef] [Green Version]
- Cahen, S.; Eymery, J.B.; Janot, R.; Tarascon, J.M. Improvement of the LiBH4 hydrogen desorption by inclusion into mesoporous carbons. J. Power Sources 2009, 189, 902–908. [Google Scholar] [CrossRef]
- Gross, A.F.; Vajo, J.J.; Van Atta, S.L.; Olson, G.L. Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J. Phys. Chem. C 2008, 112, 5651–5657. [Google Scholar] [CrossRef]
- Gosalawit-Utke, R.; Nielsen, T.K.; Pranzas, K.; Saldan, I.; Pistidda, C.; Karimi, F.; Laipple, D.; Skibsted, J.; Jensen, T.R.; Dornhem, M. 2LiBH4-MgH2 in a resorcinol-furfural carbon aerogel scaffold for reversible hydrogen storage. J. Phys. Chem. C 2012, 116, 1526–1534. [Google Scholar] [CrossRef]
- Mason, T.; Majzoub, E.H. Effects of a carbon surface environment on the decomposition properties of nanoparticle LiBH4: A first-principles study. J. Phys. Chem. C 2014, 118, 8852–8858. [Google Scholar] [CrossRef]
- House, S.D.; Liu, X.; Rockett, A.A.; Majzoub, E.H.; Robertson, I.M. Characterization of the dehydrogenation process of LiBH4 confined in nanoporous carbon. J. Phys. Chem. C 2014, 118, 8843–8851. [Google Scholar] [CrossRef]
- Verdal, N.; Udovic, T.J.; Rush, J.J.; Liu, X.; Majzoub, E.H.; Vajo, J.J.; Gross, A.F. Dynamical perturbations of tetrahydroborate anions in LiBH4 due to nanoconfinement in controlled-pore carbon scaffolds. J. Phys. Chem. C 2013, 17, 17983–17995. [Google Scholar] [CrossRef]
- Nielsen, T.K.; Bösenberg, U.; Gosalawit, R.; Dornheim, M.; Cerenius, Y.; Besenbacher, F.; Torben, T.R. A reversible nanoconfined chemical reaction. ACS Nano 2010, 4, 3903–3908. [Google Scholar] [CrossRef] [PubMed]
- Gosalawit-Utke, R.; Nielsen, T.K.; Saldan, I.; Laipple, D.; Cerenius, Y.; Jensen, T.R.; Klassen, T.; Dornheim, M. Nanoconfined 2LiBH4-MgH2 prepared by direct melt infiltration into nanoporous materials. J. Phys. Chem. C 2011, 115, 10903–10910. [Google Scholar] [CrossRef]
- Miedema, P.S.; Ngene, P.; van der Eerden, A.M.J.; Weng, T.-C.; Nordlund, D.; Sokaras, D.; Alonso-Mori, R.; Juhin, A.; de Jongh, P.E.; de Groot, F.M.F. In Situ X-ray Raman spectroscopy of LiBH4. Phys. Chem. Chem. Phys. 2012, 14, 5581–5587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miedema, P.S.; Ngene, P.; van der Eerden, S.D.; Weng, T.-C.; Nordlund, D.; Au, Y.S.; de Groot, F.M.F. In Situ X-ray Raman spectroscopy study of the hydrogen sorption properties of lithium borohydride nanocomposites. Phys. Chem. Chem. Phys. 2014, 16, 22651–22658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shane, D.T.; Corey, R.L.; McIntosh, C.; Rayhel, L.H.; Bowman, R.C., Jr.; Vajo, J.J.; Gross, A.F.; Conradi, M.S. LiBH4 in carbon aerogel nanoscaffolds: An NMR study of atomic motions. J. Phys. Chem. C 2010, 114, 4008–4014. [Google Scholar] [CrossRef]
- Verkuijlen, M.H.W.; Ngene, P.; de Kort, D.W.; Barré, C.; Nale, A.; van Eck, E.R.H.; van Bentum, P.J.M.; de Jongh, P.E.; Kentgens, A.P.M. Nanoconfined LiBH4 and enhanced mobility of Li+ and BH4− studied by solid-state NMR. J. Phys. Chem. C 2012, 116, 22169–22178. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Majzoub, E.H.; Stavila, V.; Bhakta, R.K.; Allendorf, M.D.; Shane, D.T.; Conradi, M.S.; Verdal, N.; Udovice, T.J.; Hwang, S.-J. Probing the unusual anion mobility of LiBH4 confined in highly ordered nanoporous carbon frameworks via solid state NMR and quasielastic neutron scattering. J. Mater. Chem. A 2013, 1, 9935–9941. [Google Scholar] [CrossRef] [Green Version]
- Ngene, P.; Adelhelm, P.; Beale, A.M.; Jong, K.P.; de Jongh, P.E. LiBH4/SBA-15 Nanocomposites prepared by melt infiltration under hydrogen pressure: Synthesis and hydrogen sorption properties. J. Phys. Chem. C 2010, 114, 6163–6168. [Google Scholar] [CrossRef]
- Fang, Z.Z.; Kang, X.D.; Wang, P.; Cheng, H.M. Improved reversible dehydrogenation of lithium borohydride by milling with as-prepared single-walled carbon nanotubes. J. Phys. Chem. C 2008, 112, 17023–17029. [Google Scholar] [CrossRef]
- Fang, Z.Z.; Wang, P.; Rufford, T.E.; Kang, X.D.; Lu, G.Q.; Cheng, H.M. Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon. Acta Mater. 2008, 56, 6257–6263. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.-S.; Wang, A.-Q.; Sun, L.-X.; Fan, M.-Q.; Chu, H.-L.; Sun, J.-C.; Zhang, T. LiBH4 nanoparticles supported by disordered mesoporous carbon: Hydrogen storage performances and destabilization mechanisms. Int. J. Hydrogen Energy 2007, 32, 3976–3980. [Google Scholar] [CrossRef]
- Ngene, P.; Van Zwienen, R.; de Jongh, P.E. Reversibility of the hydrogen desorption from LiBH4: A synergetic effect of nanoconfinement and Ni addition. Chem. Commun. 2010, 46, 8201–8203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngene, P.; Verkuijlen, M.H.W.; Zheng, Q.; Kragten, J.; van Bentum, P.J.M.; Bitter, J.H.; de Jongh, P.E. The role of Ni in increasing the reversibility of the hydrogen release from nanoconfined LiBH4. Faraday Discuss. 2011, 151, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Ngene, P.; Lindemann, I.; Gutfleisch, O.; de Jong, K.P.; de Jong, P.E. Enhanced reversibility of H2 sorption in nanoconfined complex metal hydrides by alkali metal addition. J. Mater. Chem. 2012, 22, 13209–13215. [Google Scholar] [CrossRef]
- Liu, X.; Peaslee, D.; Jost, C.Z.; Majzoub, E.H. Controlling the decomposition pathway of LiBH4 via confinement in highly ordered nanoporous carbon. J. Phys. Chem. C 2010, 114, 14036–14041. [Google Scholar] [CrossRef]
- Gasnier, A.; Luguet, M.; Gonzalez Pereira, A.; Troiani, H.; Zampieri, G.; Gennari, F.C. Entanglement of N-doped graphene in resorcinol-formaldehyde: Effect over nanoconfined LiBH4 for hydrogen storage. Carbon 2019, 147, 284–294. [Google Scholar] [CrossRef]
- Xia, G.; Tan, Y.; Feilong, W.; Fang, F.; Sun, D.; Guo, Z.; Huang, Z.; Yu, X. Graphene-wrapped reversible reaction for advanced hydrogen storage. Nano Energy 2016, 26, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.; Tan, Y.; Chen, X.; Fang, F.; Sun, D.; Li, X.; Gou, Z.; Yu, X. Oxygen-free layer-by-layer assembly of lithiated composites on graphene for advanced hydrogen storage. Adv. Sci. 2017, 4, 1600257. [Google Scholar] [CrossRef] [Green Version]
- Carr, C.L.; Jayawardana, W.; Zou, H.; White, J.L.; El Gabaly, F.; Conradi, M.S.; Stavila, V.; Allendorf, M.D.; Majzoub, E.H. Anomalous H2 desorption rate of NaAlH4 confined in nitrogen-doped nanoporous carbon frameworks. Chem. Mater. 2018, 30, 2930–2938. [Google Scholar] [CrossRef]
- Gasnier, A.; Amica, G.; Juan, J.; Troiani, H.; Gennari, F.C. N-doped graphene-rich aerogels decorated with nickel and cobalt nanoparticles: Effect over hydrogen storage properties of nanoconfined LiBH4. J. Phys. Chem. C 2019. [Google Scholar] [CrossRef]
- Gosalawit-Utke, R.; Meethom, S.; Pistidda, C.; Milanese, C.; Laipple, D.; Saisopa, T.; Marini, A.; Klassen, T.; Dornheim, M. Destabilization of LiBH4 by nanoconfinement in PMMA-co-BM polymer matrix for reversible hydrogen storage. Int. J. Hydrogen Energy 2014, 39, 5019–5029. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, X.; Liu, H.; Yan, M. Enhanced hydrogen storage properties of 2LiBH4-LiAlH4 nanoconfined in resorcinol formaldehyde carbon aerogel. J. Alloys Compd. 2017, 726, 525–531. [Google Scholar] [CrossRef]
- Utke, R.; Thiangviriya, S.; Javadian, P.; Jensen, T.R.; Milanese, C.; Klassen, T.; Dornheim, M. 2LiBH4-MgH2 nanoconfined into carbon aerogel scaffold impregnated with ZrCl4 for reversible hydrogen storage. Mater. Chem. Phys. 2016, 169, 136–141. [Google Scholar] [CrossRef]
- Sitthiwet, C.; Thiangviriya, S.; Thaweelap, N.; Meethom, S.; Kaewsuwan, D.; Chanlek, N.; Utke, R. Hydrogen sorption and permeability of compacted LiBH4 nanoconfined into activated carbon nanofibers impregnated with TiO2. J. Phys. Chem. Solids 2017, 110, 344–353. [Google Scholar] [CrossRef]
- Gosalawit-Utke, R.; Milanese, C.; Javadian, P.; Jepsen, J.; Laipple, D.; Karimi, F.; Puszkiel, J.; Jensen, T.R.; Marini, A.; Klassen, T.; et al. Nanoconfined 2LiBH4-MgH2-TiCl3 in carbon aerogel scaffold for reversible hydrogen storage. Int. J. Hydrogen Energy 2013, 38, 3275–3282. [Google Scholar] [CrossRef] [Green Version]
- Gosalawit-Utke, R.; Milanese, C.; Nielsen, T.K.; Karimi, F.; Saldan, I.; Pranzas, K.; Jensen, T.R.; Marini, A.; Klassen, T.; Dornheim, M. Nanoconfined 2LiBH4-MgH2 for reversible hydrogen storages: Reaction mechanisms, kinetics and thermodynamics. Int. J. Hydrogen Energy 2013, 38, 1932–1942. [Google Scholar] [CrossRef]
- Javadian, P.; Sheppard, D.A.; Buckley, C.; Jensen, T.R. Hydrogen storage properties of nanoconfined LiBH4-Ca(BH4)2. Nano Energy 2015, 11, 96–103. [Google Scholar] [CrossRef]
- Javadian, P.; Sheppard, D.A.; Buckley, C.; Jensen, T.R. Hydrogen storage properties of nanoconfined LiBH4-NaBH4. Int. J. Hydrogen Energy 2015, 40, 14916–14924. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Sun, W.; Tang, Z.; Gou, Y.; Yu, X. Nanoconfinement of LiBH4·NH3 towards enhanced hydrogen generation. Int. J. Hydrogen Energy 2012, 37, 3328–3337. [Google Scholar] [CrossRef]
- Chen, X.; Cai, W.; Gou, Y.; Yu, X. Significantly improved dehydrogenation of LiBH4·NH3 assisted by Al2O3 nanoscaffolds. Int. J. Hydrogen Energy 2012, 37, 5817–5824. [Google Scholar] [CrossRef]
- Sofianos, M.V.; Sheppard, D.A.; Ianni, E.; Humphries, T.D.; Rowles, M.R.; Liu, S.; Buckley, C. Novel synthesis of porous aluminium and its application in hydrogen storage. J. Alloys Compd. 2017, 702, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Sofianos, M.V.; Sheppard, D.A.; Rowles, M.R.; Humphries, T.D.; Liu, S.; Buckley, C. Novel synthesis of porous Mg scaffold as a reactive containment vessel for LiBH4. RSC Adv. 2017, 7, 36340–36350. [Google Scholar] [CrossRef] [Green Version]
- Sofianos, M.V.; Sheppard, D.A.; Silvester, D.S.; Lee, J.; Paskevicius, M.; Humphries, T.D.; Buckley, C. Electrochemical synthesis of highly ordered porous al scaffolds melt-infiltrated with LiBH4 for hydrogen storage. J. Electrochem. Soc. 2018, 165, 37–42. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, H.-Z.; Gao, S.-C.; Wang, X.-h. Enhanced dehydrogenation kinetic properties and hydrogen storage reversibility of LiBH4 confined in activated charcoal. Trans. Nonferrous Met. Soc. China 2018, 28, 1618–1625. [Google Scholar] [CrossRef]
- Plerdsranoy, P.; Utke, R. Confined LiBH4-LiAlH4 in nanopores of activated carbon nanofibers. Int. J. Hydrogen Energy 2015, 40, 7083–7092. [Google Scholar] [CrossRef]
- Sofianos, M.V.; Chaudhary, A.-L.; Paskevicius, M.; Sheppard, D.A.; Humphries, T.D.; Dornheim, M.; Buckley, C.E. Hydrogen storage properties of eutectic metal borohydrides melt-infiltrated into porous Al scaffolds. J. Alloys Compd. 2019, 775, 474–480. [Google Scholar] [CrossRef]
Starting Material (Catalyst/Composite Stoichiometry) | Process | Equilibrium/Dynamic Conditions Temperature and Pressure Conditions | Reaction Pathway | Ref. |
---|---|---|---|---|
Ti-isopropox. added MgB2:2LiH | Hydrogenation | Dynamic conditions/250–300 °C, 50 bar H2 | MgB2 + 2LiH + 4H2 → MgH2 + 2LiBH4 | [33] |
MgH2:2LiBH4 | Dehydrogenation | Dynamic conditions/~400 °C, 3–5 bar H2 | MgH2 + 2LiBH4 → Mg + 2LiBH4 + H2 → MgB2 + 2LiH + 4H2 | |
TiCl3 added MgH2:2LiBH4 | Dehydrogenation | Dynamic conditions/<400 °C, <3 bar H2 | MgH2 + 2LiBH4 → Mg + 2LiBH4 + H2 → Mg + 2B + 2LiH + 4H2 | [34] |
Dynamic conditions/280–450 °C, 3–5 bar H2 | MgH2 + 2LiBH4 → Mg + 2LiBH4 + H2 → MgB2 + 2LiH + 4H2 | |||
2LiH:MgB2 (milled 120 h) | Hydrogenation | Dynamic conditions/ramp of temp. of 2 °C/min from RT to 265 °C and then 5 h isothermal/90 bar H2 | MgB2 + 2LiH + 4H2 → MgH2 + 2LiBH4 | [35] |
Dehydrogenation | Dynamic conditions/ramp of temp. of 2 °C/min from RT to 265 °C and then 5 h isothermal/0.01 bar H2 | MgH2 + 2LiBH4 → Mg + 2LiBH4 + H2 → MgB2 + 2LiH + 4H2 | ||
1LiBH4:4MgH2 | Dehydrogenation | Dynamic conditions/ramp of temp. of 10 °C/min from RT to 600 °C/vacuum | MgH2 + 0.3LiBH4 → 0.37Li0.184Mg0.816 + 0.15MgB2 + 0.78Li0.30Mg0.70 + 1.6H2 | [36] |
MgH2:2LiBH4 | Dehydrogenation | Dynamic conditions/ramp of temp. of 5 °C/min from RT to >450 °C/<3 bar H2 | MgH2 + 2LiBH4 → Mg + 2B + 2LiH + 4H2 | [37] |
Dynamic conditions/ramp of temp. of 5 °C/min from RT to 400 °C/5 bar H2 | MgH2 + 2LiBH4 → MgB2 + 2LiH + 4H2 | |||
2LiBH4:1MgH2 | Dehydrogenation | Dynamic conditions/ramp of temp. of 5 °C/min from RT to 600 °C/1 bar He | MgH2 → Mg + H2 2LiBH4 → (1/6)Li2B12H12 + (5/3)LiH + (13/6)H2 Mg + 0.23LiH → 1.23Li0.184Mg0.816 + 0.51H2 Mg (or Li0.184Mg0.816) + B → MgB2 | [38] |
Dynamic conditions/ramp of temp. of 5 °C/min from RT to 600 °C/5–10 bar H2 | MgH2 → Mg + H2 (2 − x)LiBH4 → (1/6 − x)Li2B12H12 + (5/3 − x)LiH + (13/6 − x)H2 (x/2)Mg + xLiBH4 → (x/2)MgB2 + xLiH + (3/2)xH2 | |||
Dynamic conditions/ramp of temp. of 5 °C/min from RT to 600 °C/20 bar H2 | MgH2 + 2LiBH4 → MgB2 + 2LiH + 4H2 | |||
2LiBH4:1MgH2 | Dehydrogenation | Dynamic conditions/ramp of temp. of 30 °C/min from RT to 450 °C/10 bar H2 | MgH2 + 2LiBH4 → Mg + 2LiBH4 + H2 → MgB2 + 2LiH + 4H2 | [55] |
Ni added 2LiBH4:1MgH2 | Hydrogenation | Equilibrium condition/375–475 °C | Above 413 °C Low plateau MgB2 + 2LiH + 3H2 → Mg + 2LiBH4 High Plateau Mg + H2 → MgH2 Below 413 °C MgB2 + 2LiH + 4H2 → MgH2 + 2LiBH4 | [56] |
Dehydrogenation | Equilibrium condition/340–450 °C | High plateau MgH2 + 2LiBH4 → Mg + 2LiBH4 + H2 Low plateau Mg + 2LiBH4 → MgB2 + 2LiH + 3H2 | [39] | |
TiO2 added 2LiBH4:1MgH2 | Dehydrogenation | Equilibrium condition/350–425 °C | ||
TiCl3 added 2LiBH4:1MgH2 | Dehydrogenation | Equilibrium condition/350–425 °C | [40] |
Additive | First Dehydrogenation | First Hydrogenation | Cycling | Ref. |
---|---|---|---|---|
1 mol% TiF3 * | ~8 wt.%, 400 °C, 3 bar H2/32 min | 7.6 wt.%, 350 °C, 75 bar H2/4 h | Not available | [58] |
10 mol% Ti-isopropox. ** | ~6 wt.%, 400 °C, 5 bar H2/1.75 h | ~6 wt.%, 350 °C, 50 bar H2/4.5 h | Not available | [59] |
10 mol% Ti * | ~6 wt.%, 400 °C, 3 bar H2/3.3 h (1) | 9.5 wt.%, 400 °C, 50 bar H2/3.3 h | Not available | [60] |
5 mol% NbF5 ** | 8.3 wt.%, 400 °C, 4 bar H2/5 h | 8.2 wt.%, 400 °C, 65 bar H2/30 min | 15 cycles/Hydro. average: 8.9 wt.%/Dehydro. average: 8.3 wt.% | [61] |
10 wt.% Ni-B * | 9.4 wt.%, 400 °C, 4 bar H2/5 h | Not available | 3 cycles/Av. dehydro. capacity: ~9 wt.% | [62] |
5 mol% Fe * | ~7 wt.%, 400 °C, 5.5 bar H2/14 h | ~7 wt.%, 350 °C, 50 bar H2/4 h | 3 cycles/Loss of capacity of about 0.5 wt.% | [63] |
1 mol% TiO2 * | ~10 wt.%, 400 °C, 3 bar H2/50 min | ~10 wt.%, 400 °C, 50 bar H2/25 min | 10 cycles/stable | [39] |
10 mol% TiF4 ** | ~8 wt.%, 390 °C, 4 bar H2/7 h | ~8 wt.%, 350 °C, 50 bar H2/3 h | Not available | [64] |
~5 mol% (3TiCl3. AlCl3) */** | ~9.5 wt.%, 400 °C, 4 bar H2/30 min | ~9.5 wt.%, 350 °C, 100 bar H2/30 min | 25 cycles/Loss of capacity (2): 0.061 wt.%/cycle/0.039 wt.%/cycle | [65] |
5 mol% TiCl3 * (3) | ~9 wt.%, 400 °C, 2 bar H2/40 min | ~9 wt.%, 350 °C, 50 bar H2/10 h | 20 cycles/Loss of capacity: 0.002 wt.%/cycle | [66] |
5 wt.% Ti3C2 * | ~9.5 wt.%, 390 °C, 3 bar H2/30 min | ~ 9.5 wt.%, 350 °C, 50 bar H2/5 min | 15 cycles/8% of capacity reduction (after cycling: 8.7 wt.%) | [67] |
Additive | Theoretical and Predicted Values | Experimental Values | ||||||
---|---|---|---|---|---|---|---|---|
Predicted Reaction | H2 Content (wt.%) | ΔH300 K (kJ/mol H2) | T, P = 1 bar (°C) | Temperature of H2 Release (°C) | Experimental wt.% | Conditions (T, P) for 1° Isothermal Desorption (1) | ||
2LiBH4 → 2LiH + 2B + 3H2 | 13.9 | 62.8 (3) | 322 (3) | 450 (1) | 0 at 400 °C (1)9 at 600 °C (2) | - | ||
LiBH4 → Li + B + 2H2 | 18.5 | 89.7 (3) | 485 (3) | - | - | - | ||
Metals | Al | LiBH4 + 1/2Al → LiH + 1/2AlB2 + 3/2H2 | 8.6 | 57.9 (3) | 277 (3)188 (4) | 350 and 430 (1) | 6.8 (1), 7.8 (2) | 395-1 bar |
Mg | - | - | - | - | 430 (1) | 5.6 (1), 9 (2) | 375-1 bar | |
Ti | - | - | - | - | 405 (1) | 2.5 (1) | 400-1 bar | |
V | - | - | - | - | 430 (1) | 4.4 (1) | 400-1 bar | |
Cr | 2LiBH4 + Cr → CrB2 + 2LiH + 3H2 | 6.3 | 31.7 (3) | 25 (3) | 415 (1) | 4.4 (1) | 400-1 bar | |
Sc | - | 6.7 | - | - | 420 (1) | 2.9 (1) | 400-1 bar | |
Ni | - | - | - | - | - | - | - | |
Ca | - | - | - | - | - | 5.9 (2) | - | |
In | - | - | - | - | - | 7.8 (2) | - | |
Fe | 2LiBH4 + 2Fe → 2FeB + 2LiH + 3H2 | 3.9 | 12.8 (3) | −163 (3) | - | - | - | |
Fe | 2LiBH4 + 4Fe → 2Fe2B + 2LiH + 3H2 | 2.3 | 1.2 (3) | - | - | - | - | |
Hydrides | AlH3 | 4LiBH4 + 2AlH3 → 2AlB2 + 4LiH + 9H2 | 12.4 | 39.6 (3) | 83 (3) | - | - | - |
TiH2 | 2LiBH4 + TiH2 → TiB2 + 2LiH + 4H2 | 8.6 | 4.5 (3) | - | 410 (1) | 1.7 (1) | 390-1 bar | |
VH2 | 2LiBH4 + VH2 → VB2 + 2LiH + 4H2 | 8.4 | 7.2 (3) | −238 (3) | - | - | - | |
ScH2 | 2LiBH4 + ScH2 → ScB2 + 2LiH + 4H2 | 8.9 | 32.6 (3) | 26 (3) | - | - | - | |
CrH2 | 2LiBH4 + CrH2 → CrB2 + 2LiH + 4H2 | 8.3 | 16.4 (3) | −135 (3) | - | 8.3 (2) | - | |
CaH2 | 6LiBH4 + CaH2 → CaB6 + 6LiH + 10H2 | 11.7 | 45.4 (3) | 146 (3) | 415 (1) | 5.1 (1), 9 (2) | 395-1 bar | |
MgH2 | 2LiBH4 + MgH2 → MgB2 + 2LiH + 4H2 | 11.4 | 50.4 (3) | 186 (3)170 (4) | 350 and 430 (1) | 10.2 (1), 7.8 (2) | 370-1 bar |
Ref. | Composition | H2 wt.% at Successive Cycles of Dehydrogenation | Type of Measurement | Temperature, Pressure, and Operating Time Conditions for Rehydrogenation |
---|---|---|---|---|
[72] | LiBH4 + 0.2Al | 6.3, 4.2, 3.8, 5.1, 6.7 | Isothermal dehydrogenation at 395 °C, 1 bar Isothermal dehydrogenation at 395 °C, 3 bar | 350 °C, 150 bar, not available |
[73] | LiBH4 + 0.5Al | 8, 3.5 | TPD up to 600 °C, vacuum | 600 °C, 100 bar, not available |
[74] | LiBH4 + 0.5Al + 0.04 TiF3 | 7.3, 5.1, 4.1, 3 | Isothermal dehydrogenation at 400 °C, 1 bar | 400 °C, 100 bar, 100 min |
[75] | LiBH4 + 0.5Al | 8, 7, 2.5 | PCI 450 °C | 500 °C, 150 bar, 1200 min |
[77] | LiBH4 + 1.5Al LiBH4 + 1.5Al + 0.045 TiB2 | 5.7, 4.2, 3.6, 3, 2.7, 2.5, 2.4, 2.2, 2, 1.8 5.5, 4.4, 3.4, 2.9, 2.5, 2, 2.2, 1.9, 1.8, 1.6 | No isothermal desorption up to 500 °C, 0.01 bar | 400 °C, 100 bar, 120 min |
[78] | LiBH4 + 0.5Al + 0.04 TiCl3 | 8.4, 5.8 | TGA up to 450 °C | 380 °C, 150 bar, 1080 min |
Ref. | Method | ΔH (kJ mol−1) | T P = 1bar (°C) | |
---|---|---|---|---|
[82] | Calculation | HSC Chemistry HSC Chemistry with modified parameters for LiBH4 | 66.2 59.2 | 389 418 |
[84] | Thermo-Calc (SGTE 1 database) Thermo-Calc (SGTE database with modified parameters for CaB6) | 60.9 48.8 | 346 264 | |
[88] | Ab initio Simulation USPP 2—Hexagonal LiBH4 Ab initio Simulation USPP—Orthorhombic LiBH4 | 50.4 60.3 | ||
Ab initio Simulation PAW 3—Hexagonal LiBH4 Ab initio Simulation PAW—Orthorhombic LiBH4 | 52.9 62.7 | |||
[84] | Experimental | Measured equilibrium pressures | 56.5 | 309 |
Synthesis Procedure | Destabilized LiBH4 Based Composite | Ref. |
---|---|---|
Gas-solid reaction (pressure and temperature) RE(s) + (2 + x)/2 H2(g) → REH2+x(s) | RE3+ = Sc, Ce, Y | [54,83,89,90,91,92] |
Solid-solid reaction (ball milling) RECl3(s) + 3LiH(s) → REH2+x(s) + 3LiCl + (1 − x)/2 H2(g) | RE3+ = Ce, La, Nd | [94,95,96] |
Ball milling followed by heating LiRE(BH4)3Cl → (1 − 3/m)REHn(s) + LiCl + 3/mREBm(s)+ [(6 − n/2)+(3n/2m)]H2(g) RE(BH4)3(s) → (1 − 3/m)REHn(s) + 3/mREBm(s) + [(6 − n/2) + (3n/2m)]H2(g) | RE3+ = Ce, Gd, La, Pr, Nd, Sm | [93,94,97,98,99,103,104,105] |
RE3+ = Y, Sm, Eu, Gd, Tb, Er, Yb and Lu | [95,97,98,99,106,107] |
Composite | Solid Products | Theoretical Capacity (wt.%) * | Experimental Capacity (wt.%) 1st Cycle/2th Cycle | Experimental Conditions Rehyd./Dehyd. | Ref. |
---|---|---|---|---|---|
6LiBH4-CeH2+x | CeB6 + 6LiH | 7.4 | 6.0/6.0 | 350 °C, 100 bar/400 °C, vacuum | [83] |
4LiBH4-YH3 | YB4 + 4LiH | 8.5 | 7.0/5.2 | 350 °C, 90 bar/350 °C, 5 bar | [91] |
6LiBH4-CeCl3 | CeB6 + 3LiH + 3LiCl | 5.6 | 5.3/2.3 | 400 °C, 60 bar/400 °C, 0.2 bar | [93] |
6LiBH4-GdCl3 | GdB4 + 3LiH + 3LiCl + B | 5.3 | 5.0/2.0 | 400 °C, 60 bar/400 °C, 0.2 bar | |
6LiBH4-CeH2+x-3LiCl | CeB6 + 6LiH + 3LiCl | 5.1 | 4.6/4.6 | 400 °C, 60 bar/400 °C, 0.2 bar | [94] |
6LiBH4-LaH2+x-3LiCl | LaB6 + 6LiH + 3LiCl | 5.1 | 5.1/3.6 | 400 °C, 60 bar/400 °C, 0.2 bar | |
4LiBH4-YH2+x-3LiCl | YB4 + 4LiH + 3LiCl | 4.8 | 4.5/4.1 | 400 °C, 65 bar/400 °C, 0.2 bar | [95] |
4LiBH4-NdH2+x-3LiCl | NdB4 + 4LiH + 3LiCl | 4.0 | 3.9/3.9 | 400 °C, 100 bar/370 °C, vacuum | [96] |
6LiBH4-LaH2+x-3LiCl | LaB6 + 6LiH + 3LiCl | 5.1 | 4.2/0.8 | 340 °C, 100 bar/350 °C, 5 bar | [98] |
6LiBH4-ErH2+x-3LiCl | ErB4 + 4LiH + 3LiCl + B | 4.8 | 3.0/2.4 | 340 °C, 100 bar/400 °C, 5 bar | [95] |
Matrix | Filling f | Destabilizing Agent | Temperatures d | H2 Release wt.% b | Pressure e | Notes | Ref. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elem | Type | Dop | P.S. | Impr | wt.% a | vol% | Hydride | Additive | Onset | 50% c | Final | 1st | 2nd | 3rd | D Bar | R Bar | ||
C | SWNT | Mec | 77 * | Ni | 270 | 450 | 11.4 (8.8 *) | 6.1 (4.7 *) | 4.6 (3.5 *) | <1 × 10−3 | 100 | Catalyst from synthesis | [126] | |||||
C | CMK | Mec | 50 * | 225 ** | 332 | 600 | 14 (7) | 6 (3) | ND | 1 | 30 | TPD | [128] | |||||
C | AC | Wet | 30 | 70 * | 220 | 300 | 350 | 11.2 (3.4) * | 6.6 (2.0) * | 1 × 10−3 | 50 | TPD | [127] | |||||
C | AC | 12 ** | Melt | 12 * | 35 | 190 | 320 ** | 500 | 13.6 (1.6) * | 6.0 (0.7) * | 6.0 (0.7) * | NS | 60 | TPD | [151] | |||
C | CMK | 4 | Wet | 33 | 67 * | 200 | 235 ** | 500 | 12.0 (4.0) | « 0 » | NS | <0.1 | 100 | 18 h. Impregnation in MTBE | [112] | |||
50 | 100 * | 200 | 280 ** | 12.0 * (6.0) | Outer LiBH4 | |||||||||||||
C | NPC | 2.0 | 10 * | 50 * | 220 | 310 ** | 400 ** | 9.0 ** (0.9) ** | NS | NS | [132] | |||||||
C | NPC | 4.0 | 20 | 70 | 220 ** | 350 | 350 | NS | 6.9 ** (1.4) ** | 5.5 ** (1.1) ** | 1 × 10−5 | 60 | Isotherm | [109] | ||||
C | HSAG | 2–3 | 25 | 75 * | Ni | <200 | <350 | 400 | 14 (3.5) | 9.2 (2.3) | NS | 1 | 40 | TPD Ar flow | [129] | |||
C | HSAG | 2–3 | Melt | 20 | 80 * | Li | 225 ** | 340 ** | 400 | 15 * (3.0) | 10.9 * (2.2) | NS | 1 | 60 | 10 wt.% LiH | [131] | ||
C | ACNF | 2.8 | Wet | 50 | X | LiAlH4 | 220 | 302 | 320 | 9.2 * (4.6) | 7.6 * (3.8) | 6.0 * (3.0) | <1 × 10−5 | 80 | No density | [152] | ||
C | ACNF | Melt | TiO2 | Compacted | [141] | |||||||||||||
C | PMMA-BM | Wet | 8.1 | X | 80 | 105 | 120 | 0.74 (8.8) | 0.31 (3.8) | NS | vacuum | 50 | No pore size information | [138] | ||||
Al | 1.7–50+ | Melt | 10.5 | 5 * | TiCl3 | 380 | 440 ** | 540 | (1.8) | NS | NS | 0.88 | TPD LiAl formed | [148] | ||||
14.5 | 8 * | 100 | 490 ** | 540 | (2.8) | NS | NS | 1.3 | TPD | |||||||||
21.4 | 12 * | 180 ** | 240 ** | 265 | 2.0 ** (0.42) ** | 1.6 ** (0.34) ** | 1.2 ** (0.26) ** | 0.82 | 80 | |||||||||
27.4 | 17 * | 350 | 480 ** | 540 | (3.8) | NS | NS | 1.4 | ||||||||||
Al | Melt | 30 | X | KBH4 | TiCl3 | 100 | 450 ** | 510 | 7.3 * (2.2) | TPD No pore size information | [153] | |||||||
Al2O3 | 6.2 | Melt | 20 | 15 * | NH3 | 65 | 140 ** | 280 | 14.4 ** (2.9) ** | NS | NS | 1 | NS | TPD | [147] | |||
33 | 30 * | 65 | 160 ** | 280 | 12.9 ** (4.2) ** | NS | NS | 1 | NS | |||||||||
50 | 60 * | 65 | 190 ** | 280 | 8.8 ** (4.4) ** | NS | NS | 1 | NS | |||||||||
Mg | 1.7–50+ | Melt | 12.8 | 100 | 465 | 550 | 21.8 * (2.8) | NS | NS | <1.2 | TPD LiH+Mg →LiMg + 0.5H2 | [148] | ||||||
22.5 | 100 | 490 | 550 | 22.7 * (5.1) | NS | NS | <2.5 | |||||||||||
32.6 | 100 | 490 | 550 | 21.8 * (7.1) | NS | NS | <2.9 | |||||||||||
SiO2 | SBA15 | 5–9 | Melt | 40 * | 100 | 150 | 295 ** | 450 | 15.0 ** (9.8) ** | 3.7 ** (2.4) ** | 2.8 ** (1.8) ** | 0.13 | 100 | [125] | ||||
SiO2 | 11 ** | Melt | 33 | 66 * | NH3 | 80 ** | 130 ** | 300 | 8.8 * (5.8)* | NS | NS | 1 | NS | TPD | [146] |
Matrix | Filling f | Destabilizing Agent | Temperatures d | H2 Release wt.% b | Pressure e | Notes | Ref. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elem | Type | Dop | P.S. | Impr | wt.% a | vol% | Hydride | Additive | Onset | 50% c | Final | 1st | 2nd | 3rd | D Bar | R Bar | ||
C | CAS | 13 | Melt | 27 * | 70 * | 230 | 300 | 12.6 (3.5) | 8.2 * (2.3) * | 6.9 * (1.9) * | <0.05 | 100 | Impregnation under Ar | [113] | ||||
C | CAS | G | 16 | Melt | 17 * | 30 | 235 ** | 325 ** | 400 | 13.8 (2.3) * | 6.5 ** (1.1) ** | NS | 0.5 | 60 | [111] | |||
32 * | 70 | 245 ** | 340 ** | 400 | 13.8 (4.4) * | 6.8 ** (2.2) ** | NS | 0.5 | 60 | |||||||||
6.1 | Melt | 12 * | 30 | 200 ** | 325 ** | 400 | 13.8 (1.7) * | 6.2 ** (0.7) ** | NS | 0.5 | 60 | |||||||
24 * | 70 | 210 ** | 335 ** | 400 | 13.8 (3.3) * | 7.7 ** (1.9) ** | NS | 0.5 | 60 | |||||||||
C | CAS | N-G | 7.6 | Melt | 9 * | 30 | 190 ** | 315 ** | 400 | 13.8 (1.2) * | 6.6 (0.6) * | NS | 0.5 | 60 | [133] | |||
18 * | 70 | 200 ** | 330 ** | 400 | 13.8 (2.5) * | 6.3 (1.2) * | NS | 0.5 | 60 | |||||||||
4.2 | Melt | 6 * | 30 | 180 ** | 310 ** | 400 | 13.8 (0.8) * | 4.5 (0.3) * | NS | 0.5 | 60 | |||||||
13 * | 70 | 205 ** | 320 ** | 400 | 13.8 (1.8) * | 5.3 (0.7) * | NS | 0.5 | 60 | |||||||||
C | CAS | N-G | 9.0 | Melt | 11 * | 30 | Ni | 175 ** | 330 ** | 400 | 12.3 (1.3) * | 7.5 (0.8) * | NS | 0.5 | 60 | [137] | ||
22 * | 70 | Ni | 150 ** | 325 ** | 400 | 13.8 (3.0) * | 7.9 (1.7) * | NS | 0.5 | 60 | ||||||||
10 * | 30 | Co | 150 ** | 305 ** | 400 | 12.3 (1.2) * | 4.0 (0.4) * | NS | 0.5 | 60 | ||||||||
21 * | 70 | Co | 200 ** | 340 ** | 400 | 13.8 (2.9) * | 6.4 (1.3) * | NS | 0.5 | 60 | ||||||||
10 * | 30 | NiCo | 200 ** | 325 ** | 400 | 12.3 (1.3) * | 6.3 (0.6) * | NS | 0.5 | 60 | ||||||||
21 * | 70 | NiCo | 150 ** | 330 ** | 400 | 13.8 (2.9) * | 6.2 (1.3) * | NS | 0.5 | 60 | ||||||||
C | CAS | 21 | W + M | 34 * | 48 * | MgH2 | 260 | 320 ** | 390 | 11.4 * (3.9) | 8.2 * (2.8) | 10.6 * (3.6) | 2 | 70; 98 | 20 h | [118] | ||
C | CAS | 31 | Melt | 33 | 43 * | MgH2 | 260 ** | 320 ** | 425 | 10.8 (3.6) | 10.8 (3.6) | 10.8 (3.6) | 3.4 | 145 | [119] | |||
C | CAS | Ff | 5.5 | Melt | 43 | 425 * | MgH2 | 260 ** | 410 ** | 425 | 7.9 * (3.4) | 11.2 (4.8) | 10.0 (4.3) | 3.5 | 140 | Vtot = 0.21 cm3/g 6–25 h | [114] | |
C | CAS | 26 | Melt | 33 | 44 * | MgH2 | TiCl3 | 260 ** | 370 ** | 425 | 10.8 (3.6) | 9.8 (3.25) | 10.8 (3.6) | 3.4 | 140 | 2–8 h | [143] | |
C | CAS | 26 | Melt | 25 | 30 * | MgH2 | ZrCl4 | 200 | 295 ** | 425 ** | (2.5) | NS | NS | 3.4 | 130 | TPD | [140] | |
33 | 45 * | 200 | 320 ** | 425 | 11.1 * (3.7) | 10.5 * (3.5) | 10.2 * (3.4) | |||||||||||
50 | 90 * | 200 | 340 ** | 425 ** | (5.4) | NS | NS | TPD | ||||||||||
C | CAS | 30 | Melt | 64.9 | 60 | Ca(BH4)2 | 180 ** | 340 ** | 500 | 11.3 (7.3) * | 9.1 (5.9) * | 8.2 (5.3) * | 1 | 150 | CO2 activated | [144] | ||
30 | 38.4 | 60 | 150 ** | 230 ** | 500 | 6.2 (2.4) * | 3.6 (1.4) * | 3.2 (1.2) * | 1 | 150 | ||||||||
C | CAS | 38 | Melt | 55.5 | 60 | NaBH4 | 200 ** | 340 ** | 500 | 11.5 (6.4) | 7.9 (4.4) * | 7.8 (4.3) * | 1 | 150 | CO2 activated | [145] | ||
37 | 32.8 | 60 | 210 ** | 410 ** | 500 | 10.5 (3.4) | 6.3 (2.1) * | 5.8 (1.9) * | 1 | 150 | ||||||||
C | CAS | 10 ** | Melt | NS | NS | LiAlH4 | 100 | 290 ** | 500 | 11.0 * (X) | 5.7(X) | 5.7(X) | NS | 60 | TPD 2-step impregnation | [139] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puszkiel, J.; Gasnier, A.; Amica, G.; Gennari, F. Tuning LiBH4 for Hydrogen Storage: Destabilization, Additive, and Nanoconfinement Approaches. Molecules 2020, 25, 163. https://doi.org/10.3390/molecules25010163
Puszkiel J, Gasnier A, Amica G, Gennari F. Tuning LiBH4 for Hydrogen Storage: Destabilization, Additive, and Nanoconfinement Approaches. Molecules. 2020; 25(1):163. https://doi.org/10.3390/molecules25010163
Chicago/Turabian StylePuszkiel, Julián, Aurelien Gasnier, Guillermina Amica, and Fabiana Gennari. 2020. "Tuning LiBH4 for Hydrogen Storage: Destabilization, Additive, and Nanoconfinement Approaches" Molecules 25, no. 1: 163. https://doi.org/10.3390/molecules25010163
APA StylePuszkiel, J., Gasnier, A., Amica, G., & Gennari, F. (2020). Tuning LiBH4 for Hydrogen Storage: Destabilization, Additive, and Nanoconfinement Approaches. Molecules, 25(1), 163. https://doi.org/10.3390/molecules25010163