Design, Synthesis and Biological Evaluation of Novel Coumarin-Based Hydroxamate Derivatives as Histone Deacetylase (Hdac) Inhibitors with Antitumor Activities
Abstract
:1. Introduction
2. Chemistry
3. Results and Discussion
3.1. HDAC Inhibition Assay
3.2. IC50 Values of HDAC Isoforms Inhibition of Potent Compounds
3.3. Anti-Proliferative Activities against Three Cancer Cell Lines In Vitro
3.4. Effects of Compounds 10e and 11d on Acetylated Histone Levels in A549 Cells
3.5. Compounds 10e and 11d Enhanced Apoptosis in the A549 Cell Line
3.6. Compounds 10e and 11d Induced Cell Cycle Arrest on A549 Cell Line
3.7. Theoretical Prediction of ADME Properties and Preliminary Toxicity Evaluation
3.8. Molecular Docking Studies
4. Materials and Methods
4.1. Chemistry: General Methods
4.2. General Procedures for the Preparation of Target Compounds
4.3. HDAC1 Inhibitory Assay
4.4. In Vitro Anti-Proliferation Assay.
4.5. Western Blot Analysis
4.6. Cell Apoptosis Analysis
4.7. Cell Cycle Analysis
4.8. Molecular Docking Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem. 2016, 119, 141–168. [Google Scholar] [CrossRef] [PubMed]
- Sashidhara, K.V.; Kumar, A.; Chatterjee, M.; Rao, K.B.; Singh, S.; Verma, A.K.; Palit, G. Discovery and synthesis of novel 3-phenylcoumarin derivatives as antidepressant agents. Bioorganic Med. Chem. Lett. 2011, 21, 1937–1941. [Google Scholar] [CrossRef] [PubMed]
- Rosselli, S.; Maggio, A.M.; Faraone, N.; Spadaro, V.; Morris-Natschke, S.L.; Bastow, K.F.; Lee, K.-H.; Bruno, M. The Cytotoxic Properties of Natural Coumarins Isolated from Roots of Ferulago campestris (Apiaceae) and of Synthetic Ester Derivatives of Aegelinol. Nat. Prod. Commun. 2009, 4, 1701–1706. [Google Scholar] [CrossRef] [PubMed]
- Whang, W.K.; Park, H.S.; Ham, I.; Oh, M.; Namkoong, H.; Kim, H.K.; Hwang, D.W.; Hur, S.Y.; Kim, T.E.; Park, Y.G.; et al. Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Exp. Mol. Med. 2005, 37, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Bansal, Y.; Sethi, P.; Bansal, G. Coumarin: A potential nucleus for anti-inflammatory molecules. Med. Chem. Res. 2013, 22, 3049–3060. [Google Scholar] [CrossRef]
- de Souza, L.G.; Renna, M.N.; Figueroa-Villar, J.D. Coumarins as cholinesterase inhibitors: A review. Chem.-Biol. Interact. 2016, 254, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Amin, K.M.; Awadalla, F.M.; Eissa, A.A.M.; Abou-Seri, S.M.; Hassan, G.S. Design, synthesis and vasorelaxant evaluation of novel coumarin-pyrimidine hybrids. Bioorganic Med. Chem. 2011, 19, 6087–6097. [Google Scholar] [CrossRef]
- Basanagouda, M.; Jambagi, V.B.; Barigidad, N.N.; Laxmeshwar, S.S.; Devaru, V.; Narayana, C. Synthesis, structure-activity relationship of iodinated-4-aryloxymethyl-coumarins as potential anti-cancer and anti-mycobacterial agents. Eur. J. Med. Chem. 2014, 74, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Riveiro, M.E.; Moglioni, A.; Vazquez, R.; Gomez, N.; Facorro, G.; Piehl, L.; de Celis, E.R.; Shayo, C.; Davio, C. Structural insights into hydroxycoumarin-induced apoptosis in U-937 cells. Bioorganic Med. Chem. 2008, 16, 2665–2675. [Google Scholar] [CrossRef] [PubMed]
- Riveiro, M.E.; Kimpe, N.D.; Moglioni, A.; Vazquez, R.; Monczor, F.; Shayo, C.; Davio, C. Coumarins: Old Compounds with Novel Promising Therapeutic Perspectives. Curr. Med. Chem. 2010, 17, 1325–1338. [Google Scholar] [CrossRef]
- Bronikowska, J.; Szliszka, E.; Jaworska, D.; Czuba, Z.P.; Krol, W. The Coumarin Psoralidin Enhances Anticancer Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL). Molecules 2012, 17, 6449–6464. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem. 2015, 101, 476–495. [Google Scholar] [CrossRef] [PubMed]
- Finn, G.; Creaven, B.; Egan, D. Modulation of mitogen-activated protein kinases by 6-nitro-7-hydroxycoumarin mediates apoptosis in renal carcinoma cells. Eur. J. Pharmacol. 2003, 481, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-K.; Kwon, K.-B.; Shin, B.-C.; Seo, E.-A.; Lee, Y.-R.; Kim, J.-S.; Park, J.-W.; Park, B.-H.; Ryu, D.-G. Scopoletin induces apoptosis in human promyeloleukemic cells, accompanied by activations of nuclear factor kappaB and caspase-3. Life Sci. 2005, 77, 824–836. [Google Scholar] [CrossRef] [PubMed]
- Baretti, M.; Azad, N.S. The role of epigenetic therapies in colorectal cancer. Curr. Probl. Cancer 2018. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Patel, P.; Patel, V.K.; Jain, D.K.; Veerasamy, R.; Sharma, P.C.; Rajak, H. Histone Deacetylase Inhibitors for the Treatment of Colorectal Cancer: Recent Progress and Future Prospects. Curr. Cancer Drug Targets 2017, 17, 456–466. [Google Scholar] [CrossRef]
- Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 2006, 5, 769. [Google Scholar] [CrossRef]
- Sangwan, R.; Rajan, R.; Mandal, P.K. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur. J. Med. Chem. 2018, 158, 620–706. [Google Scholar] [CrossRef]
- Rajak, H.; Singh, A.; Dewangan, P.K.; Patel, V.; Jain, D.K.; Tiwari, S.K.; Veerasamy, R.; Sharma, P.C. Peptide Based Macrocycles: Selective Histone Deacetylase Inhibitors with Antiproliferative Activity. Curr. Med. Chem. 2013, 20, 1887–1903. [Google Scholar] [CrossRef]
- Gao, S.; Li, X.; Zang, J.; Xu, W.; Zhang, Y. Preclinical and Clinical Studies of Chidamide (CS055/HBI-8000), An Orally Available Subtype-selective HDAC Inhibitor for Cancer Therapy. Anti-Cancer Agents Med. Chem. 2017, 17, 802–812. [Google Scholar] [CrossRef]
- Newbold, A.; Falkenberg, K.J.; Prince, H.M.; Johnstone, R.W. How do tumor cells respond to HDAC inhibition? Febs J. 2016, 283, 4032–4046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Seto, E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb. Perspect. Med. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Chen, X. Current Status of Epigenetics and Anticancer Drug Discovery. Anti-Cancer Agents Med. Chem. 2016, 16, 699–712. [Google Scholar] [CrossRef]
- Manal, M.; Chandrasekar, M.J.N.; Priya, J.G.; Nanjan, M.J. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorganic Chem. 2016, 67, 18–42. [Google Scholar] [CrossRef] [PubMed]
- Zhan, P.; Wang, X.; Liu, X.; Suzuki, T. Medicinal Chemistry Insights into Novel HDAC Inhibitors: An Updated Patent Review (2012-2016). Recent Pat. Anti-Cancer Drug Discov. 2017, 12, 16–34. [Google Scholar]
- Miao, J.-F.; Peng, Y.-F.; Chen, S.; Gao, W.-J.; Yang, Q.-X.; Zhu, P.; Guo, J.; Tao, J.; Luo, L.; Zhang, Y.; et al. A novel harmine derivative, N-(4-(hydroxycarbamoyl) benzyl)-1-(4-methoxyphenyl)-9H-pyrido 3,4-b indole-3-carboxamide (HBC), as histone deacetylase inhibitor: In vitro antiproliferation, apoptosis induction, cell cycle arrest, and antimetastatic effects. Eur. J. Pharmacol. 2018, 824, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Musso, L.; Dallavalle, S.; Zunino, F. Perspectives in the development of hybrid bifunctional antitumour agents. Biochem. Pharmacol. 2015, 96, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Mandal, T.; Balasubramanian, N.; Cook, G.; Srivastava, D.K. Coumarin-suberoylanilide hydroxamic acid as a fluorescent probe for determining binding affinities and off-rates of histone deacetylase inhibitors. Anal. Biochem. 2011, 408, 309–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, C.; Schnekenburger, M.; Zwergel, C.; Gaascht, F.; Mai, A.; Dicato, M.; Kirsch, G.; Valente, S.; Diederich, M. Novel inhibitors of human histone deacetylases: Design, synthesis and bioactivity of 3-alkenoylcoumarines. Bioorganic Med. Chem. Lett. 2014, 24, 3797–3801. [Google Scholar] [CrossRef] [PubMed]
- Abdizadeh, T.; Kalani, M.R.; Abnous, K.; Tayarani-Najaran, Z.; Khashyarmanesh, B.Z.; Abdizadeh, R.; Ghodsi, R.; Hadizadeh, F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur. J. Med. Chem. 2017, 132, 42–62. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Hu, Z.; Luo, J.; Tang, C.; Zhang, S.; Ning, W.; Dong, C.; Huang, J.; Liu, X.; Zhou, H.-B. Dual functional small molecule fluorescent probes for image-guided estrogen receptor-specific targeting coupled potent antiproliferative potency for breast cancer therapy. Bioorganic Med. Chem. 2017, 25, 3531–3539. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Aga, M.A.; Bhat, J.A.; Kumar, B.; Rouf, A.; Capalash, N.; Mintoo, M.J.; Kumar, A.; Mahajan, P.; Mondhe, D.M.; et al. Exploring Derivatives of Quinazoline Alkaloid L-Vasicine as Cap Groups in the Design and Biological Mechanistic Evaluation of Novel Antitumor Histone Deacetylase Inhibitors. J. Med. Chem. 2017, 60, 3484–3497. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.-W.; Xuan, J.; Wu, T.-T.; Xue, J.-Y.; Ren, Z.-W.; Liu, D.-K.; Wang, X.-Q.; Chen, X.-H.; Zhang, J.-W.; Xu, Y.-G.; et al. Design, synthesis and biological evaluation of N-phenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC. Eur. J. Med. Chem. 2016, 109, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cruz, F.; Vazquez-Rodriguez, S.; Joao Matos, M.; Herrera-Morales, A.; Villamena, F.A.; Das, A.; Gopalakrishnan, B.; Olea-Azar, C.; Santana, L.; Uriarte, E. Synthesis and Electrochemical and Biological Studies of Novel Coumarin- Chalcone Hybrid Compounds. J. Med. Chem. 2013, 56, 6136–6145. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Holsworth, D.D.; Hu, L.-Y. Molecular properties that influence the oral bioavailability of drug candidates. Chemtracts 2003, 16, 439–442. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput Chem 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Yang, F.; Shan, P.; Zhao, N.; Jiang, C.; Song, J.; Ge, D.; Han, L. Preparing method and application of iso-hydroxamic acid compound containing coumarin structure. CN108658915A, 2018. [Google Scholar]
- Li, R.; Wei, J.; Jiang, C.; Liu, D.; Deng, L.; Zhang, K.; Wang, P. Akt SUMOylation Regulates Cell Proliferation and Tumorigenesis. Cancer Res. 2013, 73, 5742–5753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Ivanov, A.; Chen, L.; Fredericks, W.J.; Seto, E.; Rauscher, F.J.; Chen, J. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. Embo J. 2005, 24, 3279–3290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds 10a–e, 11a–e and 12a,b are available from the authors. |
Compd. | R | X | n | HDAC1 IC50 (nM) |
---|---|---|---|---|
10a | H | NH | 2 | > 100 |
10b | H | NH | 5 | 9.11±0.20 |
10c | OCH3 | NH | 5 | 6.43±0.16 |
10d | OCH3 | NH | 6 | 2.51±0.12 |
10e | OCH3 | NH | 7 | 0.24±0.01 |
SAHA | -- | -- | -- | 21.10±1.05 |
Compd. | X | n | HDAC1 IC50 (nM) |
---|---|---|---|
11a | O | 4 | > 100 |
11b | O | 5 | 19.41 ± 2.21 |
11c | O | 6 | 5.61 ± 0.56 |
11d | O | 7 | 1.85 ± 0.16 |
11e | O | 8 | 7.33 ± 1.01 |
SAHA | -- | -- | 21.10 ± 1.05 |
Compd. | R′ | Y | n | HDAC1 IC50 (nM) |
---|---|---|---|---|
12a | H | O | 7 | 8.72 ± 1.03 |
12b | CH3 | O | 7 | 6.88 ± 0.85 |
SAHA | -- | -- | -- | 21.10 ± 1.05 |
Compound | IC50 (nM) | ||||||
---|---|---|---|---|---|---|---|
Class I | Class II | Class IV | |||||
1 | 2 | 8 | 4 | 5 | 6 | 11 | |
10e | 0.24 ± 0.01 | 0.68 ± 0.05 | 16.90 ± 0.01 | >1000 | >1000 | 5.40 ± 1.00 | >1000 |
11d | 1.85 ± 0.15 | <0.32 | 1.85 ± 0.14 | >1000 | >1000 | 5.67 ± 1.42 | >1000 |
SAHA | 21.10 ± 1.05 | 18.55 ± 0.13 | 195.90 ± 86.13 | >1000 | >1000 | 20.36 ± 3.92 | >1000 |
Compound | IC50 (μM) | ||
---|---|---|---|
A549 | Hela | HepG2 | |
10e | 1.96 ± 0.74 | 1.31 ± 0.86 | >10 |
11d | 0.56 ± 0.28 | 2.62 ± 1.53 | 7.71 ± 2.07 |
SAHA | 2.63 ± 0.87 | 2.86 ± 0.35 | 4.51 ± 0.68 |
Compound | cLogP | MW | tPSA | n-ON | n-OHNH | nrotb | Volume (Å) |
---|---|---|---|---|---|---|---|
10e | 3.18 | 348.40 | 100.80 | 7 | 3 | 10 | 323.55 |
11d | 3.38 | 349.38 | 98.00 | 7 | 2 | 10 | 320.13 |
SAHA | 2.47 | 264.32 | 78.42 | 5 | 3 | 8 | 255.64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Zhao, N.; Song, J.; Zhu, K.; Jiang, C.-s.; Shan, P.; Zhang, H. Design, Synthesis and Biological Evaluation of Novel Coumarin-Based Hydroxamate Derivatives as Histone Deacetylase (Hdac) Inhibitors with Antitumor Activities. Molecules 2019, 24, 2569. https://doi.org/10.3390/molecules24142569
Yang F, Zhao N, Song J, Zhu K, Jiang C-s, Shan P, Zhang H. Design, Synthesis and Biological Evaluation of Novel Coumarin-Based Hydroxamate Derivatives as Histone Deacetylase (Hdac) Inhibitors with Antitumor Activities. Molecules. 2019; 24(14):2569. https://doi.org/10.3390/molecules24142569
Chicago/Turabian StyleYang, Feifei, Na Zhao, Jiali Song, Kongkai Zhu, Cheng-shi Jiang, Peipei Shan, and Hua Zhang. 2019. "Design, Synthesis and Biological Evaluation of Novel Coumarin-Based Hydroxamate Derivatives as Histone Deacetylase (Hdac) Inhibitors with Antitumor Activities" Molecules 24, no. 14: 2569. https://doi.org/10.3390/molecules24142569
APA StyleYang, F., Zhao, N., Song, J., Zhu, K., Jiang, C.-s., Shan, P., & Zhang, H. (2019). Design, Synthesis and Biological Evaluation of Novel Coumarin-Based Hydroxamate Derivatives as Histone Deacetylase (Hdac) Inhibitors with Antitumor Activities. Molecules, 24(14), 2569. https://doi.org/10.3390/molecules24142569