Next Article in Journal
A High-Content Screen Reveals New Small-Molecule Enhancers of Ras/Mapk Signaling as Probes for Zebrafish Heart Development
Previous Article in Journal
Green Tea Quality Evaluation Based on Its Catechins and Metals Composition in Combination with Chemometric Analysis
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Molecules 2018, 23(7), 1690;

Detailed Analysis of 17β-Estradiol-Aptamer Interactions: A Molecular Dynamics Simulation Study

Faculty of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany
Institute for Organic Chemistry, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
Author to whom correspondence should be addressed.
Received: 1 June 2018 / Revised: 6 July 2018 / Accepted: 9 July 2018 / Published: 11 July 2018
(This article belongs to the Section Computational and Theoretical Chemistry)
Full-Text   |   PDF [37230 KB, uploaded 11 July 2018]   |  


Micro-pollutants such as 17β-Estradiol (E2) have been detected in different water resources and their negative effects on the environment and organisms have been observed. Aptamers are established as a possible detection tool, but the underlying ligand binding is largely unexplored. In this study, a previously described 35-mer E2-specific aptamer was used to analyse the binding characteristics between E2 and the aptamer with a MD simulation in an aqueous medium. Because there is no 3D structure information available for this aptamer, it was modeled using coarse-grained modeling method. The E2 ligand was positioned inside a potential binding area of the predicted aptamer structure, the complex was used for an 25 ns MD simulation, and the interactions were examined for each time step. We identified E2-specific bases within the interior loop of the aptamer and also demonstrated the influence of frequently underestimated water-mediated hydrogen bonds. The study contributes to the understanding of the behavior of ligands binding with aptamer structure in an aqueous solution. The developed workflow allows generating and examining further appealing ligand-aptamer complexes. View Full-Text
Keywords: molecular dynamics simulation; 17β-estradiol; DNA-aptamer; GROMACS; modeling molecular dynamics simulation; 17β-estradiol; DNA-aptamer; GROMACS; modeling

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Eisold, A.; Labudde, D. Detailed Analysis of 17β-Estradiol-Aptamer Interactions: A Molecular Dynamics Simulation Study. Molecules 2018, 23, 1690.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top