Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey
Abstract
1. Introduction
2. Results
2.1. The Headspace Chemical Profile
2.2. The Extracts Chemical Profile
3. Materials and Methods
3.1. Headspace Solid-Phase Microextraction (HS-SPME)
3.2. Ultrasonic Solvent Extraction (USE)
3.3. GC-FID and GC-MS Analyses
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sobolewska, D.; Podolak, I.; Makowska-Wąs, M. Allium ursinum: Botanical, phytochemical and pharmacological overview. Phytochem. Rev. 2015, 14, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Kubec, R.; Svobodova, M.; Velisek, J. Distribution of S-alk(en)ylcysteine sulfoxides in some Allium species. Identification of a new flavour precursor: S-ethylcysteine sulfoxide (ethiin). J. Agric. Food Chem. 2000, 48, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Gođevac, D.; Vujisić, L.; Mojović, M.; Ignjatović, A.; Spasojević, I.; Vajs, V. Evaluation of antioxidant capacity of Allium ursinum L. volatile oil and its effect on membrane fluidity. Food Chem. 2008, 107, 1692–1700. [Google Scholar] [CrossRef]
- Błazewicz-Woźniak, M.; Michowska, A. The growth, flowering and chemical composition of leaves of three ecotypes of Allium ursinum L. Acta Agrobot. 2011, 64, 171–180. [Google Scholar] [CrossRef]
- Gîtin, L.; Dinicã, R.; Parnavel, R. The influence of extraction method on the apparent content of bioactive compounds in Romanian Allium spp. leaves. Not. Bot. Horti Agrobot. Cluj Napoca 2012, 40, 93–97. [Google Scholar]
- Sobolewska, D.; Janeczko, Z.; Kisiel, W.; Podolak, I.; Galanty, A.; Trojanowska, D. Steroidal glycosides from the underground parts of Allium ursinum L. and their cytostatic and antimicrobial activity. Acta Pol. Pharm. Drug Res. 2006, 63, 219–223. [Google Scholar]
- Sendl, A. Allium sativum and Allium ursinum: Part 1. Chemistry, analysis, history, botany. Phytomedicine 1995, 1, 323–329. [Google Scholar] [CrossRef]
- Farkas, Á.; Zajácz, E. Nectar production for the Hungarian honey industry. Eur. J. Plant Sci. Biotechnol. 2007, 1, 121–151. [Google Scholar]
- Farkas, Á.; Molnár, R.; Morschhauser, T.; Hahn, I. Variation in nectar volume and sugar concentration of Allium ursinum L. ssp. ucrainicum in three habitats. Sci. World J. 2012, 2012, 138579. [Google Scholar] [CrossRef]
- Jerković, I. Volatile benezene derivatives as honey biomarkers. Synllet 2013, 24, 2331–2334. [Google Scholar] [CrossRef]
- Jerković, I.; Kuś, P.M. Terpenes in honey: Occurrence, origin and their role as chemical biomarkers. RSC Adv. 2014, 4, 31710–31728. [Google Scholar] [CrossRef]
- Jerković, I.; Kranjac, M.; Marijanović, Z.; Zekić, M.; Radonić, A.; Tuberoso, C.I.G. Screening of Satureja subspicata Vis. honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate derivatives as biomarkers. Molecules 2016, 21, 377. [Google Scholar] [CrossRef] [PubMed]
- Jerković, I.; Prđun, S.; Marijanović, Z.; Zekić, M.; Bubalo, D.; Svečnjak, L.; Tuberoso, C.I.G. Traceability of Satsuma mandarin (Citrus unshiu Marc.) honey through nectar/honey-sac/honey pathways of the headspace, volatiles, and semi-volatiles: Chemical markers. Molecules 2016, 21, 1302. [Google Scholar] [CrossRef] [PubMed]
- Jerković, I.; Obradović, M.; Kuś, P.M.; Šarolić, M. Bioorganic diversity of rare Coriandrum sativum L. honey: Unusual chromatographic profiles containing derivatives of linalool/oxygenated methoxybenzene. Chem. Biodivers. 2013, 10, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Alissandrakis, E.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Evaluation of four isolation techniques for honey aroma compounds. J. Sci. Food Agric. 2005, 85, 91–97. [Google Scholar] [CrossRef]
- Alissandrakis, E.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Aroma investigation of unifloral Greek citrus honey using solid-phase microextraction coupled to gas chromatographic-mass spectrometric analysis. Food Chem. 2007, 100, 396–404. [Google Scholar] [CrossRef]
- Wilkins, A.L.; Tan, S.-T.; Molan, P.C. Extractable organic substances from New Zealand unifloral vipers bugloss (Echium vulgare) honey. J. Apicult. Res. 1995, 34, 73–78. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z.; Tuberoso, C.I.G.; Bubalo, D.; Kezić, N. Molecular diversity of volatile compounds in rare willow (Salix spp.) honeydew honey: Identification of chemical biomarkers. Mol. Divers 2010, 14, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Jasicka-Misiak, I.; Poliwoda, A.; Dereń, M.; Kafarski, P. Phenolic compounds and abscisic acid as potential markers for the floral origin of two Polish unifloral honeys. Food Chem. 2012, 131, 1149–1156. [Google Scholar] [CrossRef]
- Rao, A.S. Isolation, absolute configuration and bioactivities of megastigmanes or C13 isonorterpinoides. Chem. Int. 2017, 3, 69–91. [Google Scholar]
- Tan, S.T.; Wilkins, A.L.; Holland, P.T. Isolation and X-ray crystal structure of (E)-4-(r-l′,t-2′,c-4′-trihydroxy-2′,6′,6′-trimethylcyclohexy1)but-3-en-2-one, a constituent of New Zealand thyme honey. Aust. J. Chem. 1989, 42, 1799–1804. [Google Scholar] [CrossRef]
- Kassi, E.; Chinou, I.; Spilioti, E.; Tsiapara, A.; Graikou, K.; Karabournioti, S.; Manoussakis, M.; Moutsatsou, P. A monoterpene, unique component of thyme honeys, inducesapoptosis in prostate cancer cells via inhibition of NF-κB activityand IL-6 secretion. Phytomedicine 2014, 21, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology. Bee World 1978, 59, 139–153. [Google Scholar] [CrossRef]
Sample Availability: The honey sample is available from the authors for limited time. |
No. | Compound | RI 1 | RI 2 | % 3 | No | Compound | RI 1 | RI 2 | % 3 |
---|---|---|---|---|---|---|---|---|---|
1 | Dimethyl disulfide | <900 | 747 | 1.2 | 14 | Hotrienol | 1106 | 1110 | 12.7 |
2 | Butanoic acid | <900 | 763 | 0.7 | 15 | 2-Phenylethanol 4 | 1116 | 1116 | 3.0 |
3 | 3-Methylbut-2-enal * | <900 | 781 | 1.0 | 16 | Phenylacetonitrile | 1143 | 1141 | 1.9 |
4 | Octane | <900 | 800 | 0.1 | 17 | 4-Ketoisophorone | 1147 | 1147 | 2.8 |
5 | 3-Methylbutanoic acid | <900 | 888 | 1.7 | 18 | Octanoic acid 4 | 1176 | 1179 | 1.7 |
6 | Benzaldehyde 4 | 965 | 966 | 1.1 | 19 | Nonan-1-ol 4 | 1178 | 1171 | 1.4 |
7 | Hexanoic acid 4 | 980 | 982 | 0.9 | 20 | trans-Linalool oxide (pyran type) | 1183 | 1183 | 1.5 |
8 | (E)-Hex-3-enoic 4 acid | 991 | / | 0.7 | 21 | α-Terpineol 4 | 1194 | 1191 | 0.8 |
9 | (Z)-Hex-3-enoic acid | 1013 | 1013 | 0.8 | 22 | 5-Hydroxymethylfurfural 4 | 1230 | 1226 | 4.0 |
10 | Phenylacetaldehyde 4 | 1048 | 1049 | 1.7 | 23 | 4-Methoxybenzaldehyde 4 | 1256 | 1258 | 1.1 |
11 | cis-Linalool oxide (furan type) | 1076 | 1075 | 25.3 | 24 | Nonanoic acid 4 | 1273 | 1276 | 4.0 |
12 | trans-Linalool oxide (furan type) | 1091 | 1091 | 9.2 | 25 | 3,4,5-Trimethylphenol ** | 1336 | - | 3.2 |
13 | Linalool 4 | 1101 | 1101 | 5.8 | 26 | Hexadecanoic acid 4 | 1970 | 1977 | 1.7 |
No. | Compound | RI 1 | RI 2 | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|---|
% 3 | % 3 | % 2 | % 3 | % 3 | % 3 | ||||
1 | 2-Furancarboxaldehyde | <900 | 835 | - | - | - | - | 0.6 | 0.1 |
2 | 4-Methyloctane | <900 | / | 0.1 | - | 0.1 | 0.1 | - | - |
3 | 1,3-Dimethylbenzene ** | <900 | 864 | 1.5 | - | 0.6 | 0.7 | 0.6 | - |
4 | 2-Furanmethanol | <900 | 866 | - | - | - | - | 0.1 | - |
5 | Ethylbenzene | <900 | 868 | 0.2 | - | 0.6 | 0.2 | 0.1 | - |
6 | 3-Methylbutanoic acid (Isovaleric acid) | <900 | 888 | - | - | - | - | 0.1 | - |
7 | 3-Methylbut-2-enoic acid * | <900 | / | 0.1 | 0.2 | - | 0.1 | 0.1 | - |
8 | Ethenylbenzene | <900 | 892 | 0.1 | - | - | 0.1 | - | - |
9 | 1,2-Dimethylbenzene ** | <900 | 897 | 0.3 | - | 0.8 | 0.1 | - | - |
10 | Methoxybenzene | 912 | / | 0.1 | - | - | 0.2 | - | - |
11 | 2-Acetylfuran | 918 | 914 | - | - | - | - | 0.1 | - |
12 | Benzaldehyde 4 | 965 | 966 | 0.1 | 0.2 | 0.7 | 0.1 | - | - |
13 | 5-Methylfurfural 4 | 970 | 966 | - | - | - | - | 0.1 | - |
14 | (E)-Hex-3-enoic acid 4 | 991 | / | 0.5 | 0.3 | - | 0.2 | - | - |
15 | (Z)-Hex-3-enoic acid | 1013 | 1013 | 0.1 | 0.2 | - | 0.1 | 0.1 | - |
16 | Pantolactone | 1044 | / | 0.1 | 0.2 | - | 0.1 | 0.1 | 0.2 |
17 | Phenylacetaldehyde 4 | 1048 | 1049 | 0.1 | 0.2 | 0.6 | 0.1 | - | - |
18 | Acetophenone 4 | 1065 | 1065 | - | - | - | 0.1 | - | - |
19 | cis-Linalool oxide (furan type) | 1076 | 1075 | 0.7 | 0.3 | 3.3 | 0.2 | 1.3 | 0.1 |
20 | trans-Linalool oxide (furan type) | 1091 | 1091 | 0.2 | 0.2 | 1.2 | - | 0.4 | - |
21 | Linalool 4 | 1102 | 1101 | 0.1 | - | - | - | - | - |
22 | Hotrienol | 1106 | 1110 | 0.1 | 0.2 | 0.6 | - | - | - |
23 | 2-Phenylethanol 4 | 1116 | 1116 | 0.7 | 0.7 | 1.6 | 0.3 | 0.4 | - |
24 | 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one | 1143 | 1149 | 0.2 | 0.3 | - | 0.3 | - | - |
25 | Benzoic acid 4 | 1181 | 1178 | 4.4 | 3.1 | 2.0 | 2.2 | 1.2 | 0.3 |
26 | Terpendiol I | 1191 | 1191 | 0.7 | 0.5 | 0.7 | 0.3 | - | - |
27 | 5-Hydrohymethylfurfural 1 | 1230 | 1226 | 0.8 | 2.6 | - | 1.1 | 13.3 | 0.8 |
28 | 4-Methoxybenzaldehyde 4 | 1259 | 1258 | 0.1 | 0.2 | 0.7 | - | 0.3 | - |
29 | Phenylacetic acid 4 | 1269 | 1270 | 0.8 | 0.8 | - | 0.6 | 0.1 | - |
30 | Nonanoic acid 4 | 1273 | 1276 | 0.1 | 0.2 | 0.7 | - | - | - |
31 | 1,4-Benzenediol 4 (Hydroquinone) | 1328 | / | 25.8 | 2.4 | - | 36.8 | 27.7 | 0.7 |
32 | 3,4,5-Trimethylphenol ** | 1336 | 1331 | 0.3 | 0.5 | 1.6 | 0.3 | - | 0.2 |
33 | 3-Hydroxy-4-phenylbutan-2-one | 1354 | 1348 | - | - | 2.8 | - | - | - |
34 | Phenylpropanoic acid 4 | 1359 | 1361 | 1.8 | 1.6 | - | 0.4 | - | - |
35 | 1-Hydroxylinalool ** | 1365 | / | 0.3 | 0.3 | - | - | 0.1 | - |
36 | 4-Hydroxybenzaldehyde 4 | 1393 | / | 10.3 | 9.9 | - | 5.3 | 2.5 | 1.2 |
37 | 4-Hydroxy-3-methoxy-benzaldehyde (Vanillin) 4 | 1412 | 1394 | 0.3 | 0.7 | - | - | - | - |
38 | 4-Methoxybenzoic acid (p-Anisic acid) 4 | 1452 | 1451 | 3.7 | 4.2 | - | 2.5 | 0.7 | 0.4 |
39 | (E)-3-Phenylprop-2-enoic acid (trans-Cinnamic acid) 4 | 1455 | 1457 | 0.9 | 0.7 | - | 0.4 | 0.1 | 0.1 |
40 | Methyl 4-hydroxybenzoate 4 | 1482 | / | 0.2 | 0.3 | - | - | - | - |
41 | 4-Hydroxy-phenylacetonitrile * | 1502 | / | 1.0 | 1.3 | - | 0.8 | 0.3 | 0.3 |
42 | Methyl 4-hydroxy-3-methoxybenzoate | 1530 | 1527 | 0.2 | 0.2 | - | - | - | - |
43 | 4-Hydroxybenzoic acid 4 | 1558 | 1558 | 16.4 | 0.2 | - | 16.6 | 11.6 | - |
44 | 3,5,5-Trimethyl-4-(3-oxo-1-butenyl)cyclohex-2-en-1-one (3-Oxo-α-ionone) | 1665 | 1661 | 1.8 | 1.5 | 2.4 | - | 0.3 | - |
45 | Syringaldehyde 4 | 1668 | 1667 | - | 0.7 | - | - | 0.1 | - |
46 | 3,5,5-Trimethyl-4-(3-oxobutyl)cyclohex-2-en-1-one (3-Oxo-7,8-dihydro-α-ionone) | 1682 | 1681 | 0.5 | 0.1 | 0.7 | 0.3 | 0.3 | - |
47 | Heptadecane 4 | 1700 | 1700 | 0.2 | - | 0.9 | 0.1 | - | - |
48 | Methyl syringate 4 | 1744 | 1744 | 9.8 | 12.2 | 26.2 | 3.0 | 6.6 | 1.0 |
49 | 4-Hydroxy-3,5,5-trimethyl-4-(3-oxo-1-butenyl)cyclohex-2-en-1-one (Vomifoliol) | 1802 | 1796 | 1.1 | 2.6 | - | 1.1 | 0.9 | - |
50 | Hexadecan-1-ol 4 | 1882 | 1883 | 0.1 | 0.2 | 1.2 | 0.2 | 0.4 | 1.5 |
51 | (E)-4-(r-1′,t-2′,c-4′-trihydroxy-3′,6′,6′-trimethylcyclohexyl)-but-3-en-2-one | 1960 | / | 3.1 | 18.3 | - | 6.2 | 3.3 | 49.1 |
52 | Hexadecanoic acid 4 | 1970 | 1977 | 1.1 | 4.1 | 1.8 | 0.7 | 0.1 | 0.1 |
53 | (Z)-Octadec-9-en-1-ol 4 | 2060 | 2060 | 0.8 | 6.2 | 3.1 | 2.0 | 0.1 | 8.9 |
54 | Octadecan-1-ol 4 | 2084 | 2081 | 0.1 | 1.5 | 0.8 | 0.2 | 2.2 | 2.8 |
55 | (Z)-Octadec-9-enoic acid 4 | 2142 | 2140 | 1.5 | 2.4 | 2.8 | 1.7 | 0.1 | 0.1 |
56 | Docosane 4 | 2200 | 2200 | 0.1 | 1.0 | 23.0 | 0.2 | 14.0 | 25.9 |
57 | Tricosane 4 | 2300 | 2300 | 0.7 | 1.0 | 4.3 | 0.7 | 0.1 | 0.1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerković, I.; Kuś, P.M. Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey. Molecules 2017, 22, 1909. https://doi.org/10.3390/molecules22111909
Jerković I, Kuś PM. Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey. Molecules. 2017; 22(11):1909. https://doi.org/10.3390/molecules22111909
Chicago/Turabian StyleJerković, Igor, and Piotr M. Kuś. 2017. "Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey" Molecules 22, no. 11: 1909. https://doi.org/10.3390/molecules22111909
APA StyleJerković, I., & Kuś, P. M. (2017). Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey. Molecules, 22(11), 1909. https://doi.org/10.3390/molecules22111909