Discovery of Potent c-MET Inhibitors with New Scaffold Having Different Quinazoline, Pyridine and Tetrahydro-Pyridothienopyrimidine Headgroups
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biology
2.2.1. Kinase Inhibitory Assay
2.2.2. Anti-proliferation against Tumor Cells Assay
2.2.3. Structure Activity Relationship Analysis
2.2.4. Enzymatic Selectivity Assay
2.3. Molecular Docking and Molecular Dynamics Simulation Study
3. Experimental Section
3.1. Chemical Synthesis
3.1.1. General Procedure for the Preparation of 4-Chloro-6,7-dimethoxyquinazoline (Compound 5)
3.1.2. General Procedure for the Preparation of {tert-Butyl,4-chloro-5,6-dihydropyrido(4’,3’:4,5)thieno(2,3-d)pyrimidine-7(8H)-carboxylate} (Compound 7)
3.1.3. General Procedure for the Preparation of {N-(3-(tert-Butyl)-1-phenyl-1H-pyrazol-5-yl)-3-((6,7-dimethoxyquinazolin-4-yl)oxy)benzamide} Derivatives Compound 9a–c
3.1.4. General Procedure for the Preparation of 3-Methoxy-N-phenylbenzamide Derivatives Compound 11a–i
3.1.5. General Procedure for the Preparation of N1-(3-Fluoro-4-hydroxyphenyl)-N3-(4-fluorophenyl)malonamide Derivatives Compounds 12
3.1.6. General Procedure for the Preparation of N1-(3-Fluoro-4-methoxyphenyl)-N3-(4-fluorophenyl)malonamide Derivatives Compound 13a–i
3.2. Cell Proliferative Assay
3.3. In Vitro Kinase Assay
3.4. Molecular Dockingand Dynamics Simulation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liao, J.J. Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J. Med. Chem. 2007, 50, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.; Chien, D.S. BAY 43-9006: Preclinical data. Curr. Pharm. Des. 2002, 8, 2255–2257. [Google Scholar] [CrossRef] [PubMed]
- Jennifer, S.; Lazarus, R.A.; Xiaoyi, Y. Crystal structure of the HGF β-chain in complex with the Sema domain of the MET receptor. Embo J. 2004, 23, 2325–2335. [Google Scholar]
- Bottaro, D.P.; Rubin, J.S.; Faletto, D.L. Identification of the hepatocyte growth factor receptor as the c-MET protooncogene product. Science 1991, 251, 802–804. [Google Scholar] [CrossRef] [PubMed]
- Naldini, L.; Weidner, K.M.; Vigna, E. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. Int. J. Miner. Metal. Mater. 1991, 10, 2867–2878. [Google Scholar]
- Huh, C.G.; Factor, V.M.; Sánchez, A. Hepatocyte growth factor/c-MET signaling pathway is required for efficient liver regeneration and repair. Proc. Natl. Acad. Sci. USA 2004, 101, 4477–4482. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Foroutan, H.; Sachs, M. Hepatocyte growth factor/scatter factor induces a variety of tissue-specific morphogenic programs in epithelial cells. J. Cell Biol. 1995, 131, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Comoglio, P.M.; Giordano, S.; Trusolino, L. Drug development of MET inhibitors: Targeting oncogene addiction and expedience. Nat. Rev. Drug Discov. 2008, 7, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Trusolino, L.; Comoglio, P.M. Scatter-factor and semaphorin receptors: Cell signalling for invasive growth. Nat. Rev. Cancer 2002, 2, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Y.; Li, S.N.; Yu, G.J. Discovery of novel 4-anilinoquinazoline derivatives as potent inhibitors of epidermal growth factor receptor with antitumor activity. Bioorg. Med. Chem. 2013, 21, 6084–6091. [Google Scholar] [CrossRef] [PubMed]
- Seiwert, T.Y.; Jagadeeswaran, R.; Faoro, L. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 2009, 69, 3021–3031. [Google Scholar] [CrossRef] [PubMed]
- Okuda, K.; Sasaki, H.; Yukiue, H.; Yano, M.; Fujii, Y. MET gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci. 2008, 99, 2280–2285. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Newton, R.C.; Scherle, P.A. Development of c-MET pathway inhibitors. Expert Opin. Investig. Drugs 2011, 20, 1225–1241. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Miyamoto, N.; Hirayama, T. Structure-based design, synthesis, and evaluation of imidazo[1,2-b]pyridazine and imidazo[1,2-a]pyridine derivatives as novel dual c-MET and VEGFR2 kinase inhibitors. Bioorg. Med. Chem. 2013, 21, 7686–7698. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, O.; Szhan, C. N3-arylmalonamides: A new series of thieno[3,2-b]pyridine based inhibitors of c-MET and VEGFR2 tyrosine kinases. Bioorg. Med. Chem. Lett. 2009, 19, 6836–6839. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zhang, G.; Du, X. Discovery of novel 6,7-disubstituted-4-phenoxyquinoline derivatives bearing 5-(aminomethylene)pyrimidine-2,4,6-trione moiety as c-MET kinase inhibitors. Bioorg. Med. Chem. 2014, 22, 1236–1249. [Google Scholar] [CrossRef] [PubMed]
- Mifune, Y.; Matsumoto, T.; Takayama, K. The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair. Osteoarthr. Cartil. 2013, 21, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Simard, J.R.; Getlik, M.; Grütter, C. Fluorophore labeling of the glycine-rich loop as a method of identifying inhibitors that bind to active and inactive kinase conformations. J. Am. Chem. Soc. 2010, 132, 4152–4160. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.M. Quinazoline and tetrahydropyridothieno[2,3-d]pyrimidine derivatives as irreversible EGFR tyrosine kinase inhibitors: Influence of the position 4 substituent. Med. Chem. Commun. 2013, 4, 1202–1207. [Google Scholar] [CrossRef]
- Liu, L.; Norman, M.H.; Lee, M. Structure-based design of novel class II c-MET inhibitors: 2. SAR and kinase selectivity profiles of the pyrazolone series. J. Med. Chem. 2012, 55, 1868–1897. [Google Scholar] [CrossRef] [PubMed]
- Dussault, I.; Bellon, S.F. From concept to reality: The long road to c-MET and RON receptor tyrosine kinase inhibitors for the treatment of cancer. Anti-Cancer Agents Med. Chem. 2009, 9, 221–229. [Google Scholar] [CrossRef]
- Bowles, D.W.; Kessler, E.R.; Jimeno, A. Multi-targeted tyrosine kinase inhibitors in clinical development: focus on XL-184 (cabozantinib). Drugs of Today 2011, 47, 857–868. [Google Scholar] [CrossRef] [PubMed]
- She, N.; Zhuo, L.; Jiang, W. Design, synthesis and evaluation of highly selective pyridone-based class II MET inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 3351–3355. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wu, T.T.; Wang, Z. Discovery of quinazolin-4-amines bearing benzimidazole fragments as dual inhibitors of c-MET and VEGFR-2. Bioorg. Med. Chem. 2014, 22, 4735–4744. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kang, Y.; Kim, J.T. The anti-angiogenic and anti-tumor activity of synthetic phenylpropenone derivatives is mediated through the inhibition of receptor tyrosine kinases. Eur. J. Pharmaco. 2012, 677, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Sadek, M.M.; Serrya, R.A.; Kafafy, A.H. Discovery of new HER2/EGFR dual kinase inhibitors based on the anilinoquinazoline scaffold as potential anti-cancer agents. J. Enzyme Inhib. Med. Chem. 2014, 29, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Coumar, M.S.; Chu, C.Y. Design and synthesis of tetrahydropyridothieno[2,3-d]pyrimidine scaffold based epidermal growth factor receptor (EGFR) kinase inhibitors: The role of side chain chirality and michael acceptor group for maximal potency. J. Med. Chem. 2010, 53, 7316–7326. [Google Scholar] [CrossRef] [PubMed]
- Nourry, A.; Zambon, A.; Davies, L. BRAF inhibitors based on an imidazo[4,5]pyridin-2-one scaffold and a meta substituted middle ring. J. Med. Chem. 2010, 53, 1964–1978. [Google Scholar] [CrossRef] [PubMed]
- Chackalamannil, S.; Chung, S.; Stamford, A.W. Highly potent and selective inhibitors of endothelin converting enzyme. Bioorg. Med. Chem. Lett. 1996, 6, 1257–1260. [Google Scholar] [CrossRef]
- Liu, Z.; Ai, J.; Peng, X. Novel 2,4-diarylaminopyrimidine analogues (DAAPalogues) showing potent c-MET/ALK multikinase inhibitory activities. ACS Med. Chem. Lett. 2014, 5, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Tsai, C.H.; Hung, W.C. Foretinib inhibits angiogenesis, lymphangiogenesis and tumor growh of pancreatic cancer in vivo by decreasing VEGFR-2/3 and TIE-2 signaling. Oncotarget 2015, 6, 14940–14952. [Google Scholar] [CrossRef] [PubMed]
- Discovery Studio Modeling Environment; Version 3.5; Accelrys Software Inc.: San Diego, CA, USA, 2011.
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source simulation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds are not available from the authors.
Compound | A | Enzymatic Inhibition (IC50, µM) a,b | Proliferative Inhibition (IC50, µM) b | ||
---|---|---|---|---|---|
c-MET | HeLa | Hep-G2 | MCF-7 | ||
9a | | 8.4 ± 0.6 | 28.7 ± 1.1 | 38.5 ± 1.3 | 46.1 ± 0.8 |
9b | | >10 | >100 | >100 | 59.7 ± 1.3 |
9c | | >10 | >100 | >100 | 66.7 ± 1.5 |
Compound | A | R | Enzymatic Inhibition (IC50, µM) a,b | Proliferative Inhibition (IC50, µM) b | ||
---|---|---|---|---|---|---|
c-MET | HeLa | Hep-G2 | MCF-7 | |||
11a | | 3,4-diOMe | 0.52 ± 0.05 | 14.1 ± 0.16 | >100 | 3.4 ± 0.21 |
11b | 4-Cl | 0.12 ± 0.03 | 1.8 ± 0.06 | 9.2 ± 0.17 | 7.8 ± 0.14 | |
11c | 4-F | 0.08 ± 0.04 | 0.9 ± 0.12 | 10.1 ± 0.20 | 5.2 ± 0.36 | |
11d | | 3,4-diOMe | >10 | >100 | >100 | 71.2 ± 0.34 |
11e | 4-Cl | 7.4 ± 0.07 | 26.4 ± 0.20 | >100 | 34.5 ± 0.36 | |
11f | 4-F | 5.3 ± 0.05 | 27.8 ± 0.34 | >100 | 42.1 ± 0.27 | |
11g | | 3,4-diOMe | 1.4 ± 0.10 | 4.4 ± 0.26 | >100 | 17.3 ± 0.38 |
11h | 4-Cl | 0.25 ± 0.08 | 10.7 ± 0.18 | 61.9 ± 0.23 | 22.9 ± 0.22 | |
11i | 4-F | 0.05 ± 0.02 | 1.5 ± 0.11 | 23.2 ± 0.36 | 1.1 ± 0.31 | |
XL184 | 0.03 ± 0.02 | 2.6 ± 0.07 | 49.1 ± 0.25 | 6.6 ± 0.25 |
Compound | A | R | Enzymatic Inhibition (IC50, µM) a,b | Proliferative Inhibition (IC50, µM) b | ||
---|---|---|---|---|---|---|
c-MET | HeLa | Hep-G2 | MCF-7 | |||
13a | | | 7.1 ± 0.18 | >100 | >100 | 71.8 ± 0.31 |
13b | | 0.02 ± 0.09 | 4.7 ± 0.11 | 12.8 ± 0.28 | 1.2 ± 0.21 | |
13c | | 1.2 ± 0.06 | 50.1 ± 0.25 | 49.1 ± 0.30 | >100 | |
13d | | | >10 | >100 | >100 | 91.2 ± 0.26 |
13e | | >10 | 66.7 ± 0.36 | >100 | >100 | |
13f | | >10 | 87.8 ± 0.13 | >100 | >100 | |
13g | | | 9.4 ± 0.6 | >100 | >100 | 27.7 ± 0.35 |
13h | | 0.05 ± 0.01 | 4.6 ± 0.03 | 1.7 ± 0.04 | 2.8 ± 0.23 | |
13i | | 0.25 ± 0.08 | 4.2 ± 0.31 | 43.2 ± 0.26 | 21.7 ± 0.16 | |
XL184 | 0.03 ± 0.02 | 6.6 ± 0.11 | 49.1 ± 0.13 | 2.6 ± 0.03 |
Compound | Enzyme, IC50, µM a,b | |||
---|---|---|---|---|
VEGFR-2 | c-Kit | PDGFR-b | EGFR | |
13b | 0.1 ± 0.02 | 4.3 ± 0.11 | >10 | >10 |
13h | 0.25 ± 0.02 | 5.2 ± 0.09 | 7.2 ± 0.10 | >10 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Zhang, K.; Gao, S.; Wang, G.; Huang, J.; Wang, J.; Chen, L. Discovery of Potent c-MET Inhibitors with New Scaffold Having Different Quinazoline, Pyridine and Tetrahydro-Pyridothienopyrimidine Headgroups. Molecules 2016, 21, 612. https://doi.org/10.3390/molecules21050612
Jiang Y, Zhang K, Gao S, Wang G, Huang J, Wang J, Chen L. Discovery of Potent c-MET Inhibitors with New Scaffold Having Different Quinazoline, Pyridine and Tetrahydro-Pyridothienopyrimidine Headgroups. Molecules. 2016; 21(5):612. https://doi.org/10.3390/molecules21050612
Chicago/Turabian StyleJiang, Yingnan, Ke Zhang, Suyu Gao, Guihua Wang, Jian Huang, Jinhui Wang, and Lixia Chen. 2016. "Discovery of Potent c-MET Inhibitors with New Scaffold Having Different Quinazoline, Pyridine and Tetrahydro-Pyridothienopyrimidine Headgroups" Molecules 21, no. 5: 612. https://doi.org/10.3390/molecules21050612
APA StyleJiang, Y., Zhang, K., Gao, S., Wang, G., Huang, J., Wang, J., & Chen, L. (2016). Discovery of Potent c-MET Inhibitors with New Scaffold Having Different Quinazoline, Pyridine and Tetrahydro-Pyridothienopyrimidine Headgroups. Molecules, 21(5), 612. https://doi.org/10.3390/molecules21050612