New α-Methylene-γ-Butyrolactone Derivatives as Potential Fungicidal Agents: Design, Synthesis and Antifungal Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Fungicidal Activity and Structure-Activity Relationships (SAR)
2.2.1. Fungicidal Activity of the Title Compounds against C. lagenarium
Compd. | C. lagenarium | B. cinerea | Compd. | C. lagenarium | B. cinerea | ||
---|---|---|---|---|---|---|---|
IC50 a, μM | pIC50 | IC50 a, μM | IC50 a, μM | pIC50 | IC50 a, μM | ||
4a | 13.96 | −1.145 | 29.81 | 5k | 291.95 | −2.465 | 306.85 |
4b | 8.99 | −0.954 | 22.13 | 5l | 283.99 | −2.453 | 303.36 |
4c | 12.74 | −1.105 | 27.31 | 5m | 173.74 | −2.240 | 205.50 |
4d | 15.62 | −1.194 | 24.09 | 5n | 10.27 | −1.012 | 20.57 |
4e | 8.76 | −0.943 | 30.24 | 5o | 413.72 | −2.617 | 456.91 |
4f | 14.38 | −1.158 | 23.01 | 5p | 499.33 | −2.698 | 524.54 |
4g | 52.87 | −1.723 | 60.61 | 5q | 428.93 | −2.632 | 446.08 |
4h | 65.63 | −1.817 | 77.00 | 5r | 519.42 | −2.716 | 548.63 |
4i | 95.38 | −1.979 | 111.77 | 6a | 7.68 | −0.885 | 23.32 |
4j | 192.44 | −2.284 | 198.67 | 6b | 9.24 | −0.966 | 29.08 |
4k | 177.96 | −2.250 | 193.28 | 6c | 10.27 | −1.012 | 27.45 |
4l | 188.93 | −2.276 | 209.12 | 6d | 8.17 | −0.912 | 25.99 |
4m | 238.97 | −2.378 | 243.35 | 6e | 9.70 | −0.987 | 27.15 |
4n | 212.50 | −2.327 | 224.16 | 6f | 73.14 | −1.864 | 101.94 |
4o | 219.44 | −2.341 | 230.85 | 6g | 159.33 | −2.202 | 179.62 |
4p | 206.51 | −2.315 | 236.62 | 6h | 125.71 | −2.099 | 147.84 |
4q | 8.93 | −0.951 | 21.50 | 6i | 136.55 | −2.135 | 163.84 |
4r | 44.51 | −1.648 | 56.32 | 6j | 162.30 | −2.210 | 196.45 |
5a | 16.77 | −1.225 | 30.57 | 6k | 135.95 | −2.133 | 161.43 |
5b | 17.74 | −1.249 | 34.51 | 6l | 154.27 | −2.188 | 179.33 |
5c | 15.94 | −1.202 | 34.60 | 6m | 173.23 | −2.239 | 202.97 |
5d | 13.41 | −1.127 | 22.93 | 6n | 24.25 | −1.385 | 40.26 |
5e | 15.35 | −1.186 | 36.10 | 6o | 242.03 | −2.384 | 280.01 |
5f | 79.07 | −1.898 | 95.02 | 6p | 266.25 | −2.425 | 298.26 |
5g | 170.80 | −2.232 | 193.75 | 4 | 160.63 | −2.206 | 207.99 |
5h | 215.94 | −2.334 | 229.37 | 5 | 238.61 | −2.378 | 279.96 |
5i | 181.69 | −2.259 | 193.87 | 6 | 117.12 | −2.069 | 139.85 |
5j | 207.63 | −2.317 | 259.27 | Chlorothalonil b | 4.21 | −0.624 | 8.31 |
2.2.2. Fungicidal Activity of the Title Compounds against B. cinerea
2.3. QSAR Study on the Fungicidal Activity against C. lagenarium
No. | Compd. | pIC50 | Structural Descriptors | ||||
---|---|---|---|---|---|---|---|
No | qCmax | MAOEP | qHmax | qHmin | |||
1 | 4a | −1.1450 | 1.6111 | 0.3570 | 1.9821 | 0.1606 | 0.1084 |
2 | 4b | −0.9540 | 1.6111 | 0.3568 | 1.9820 | 0.1716 | 0.1084 |
3 | 4c | −1.1050 | 1.6111 | 0.3571 | 1.9820 | 0.1628 | 0.1084 |
4 | 4d | −1.1940 | 1.6111 | 0.3532 | 1.9751 | 0.1613 | 0.1078 |
5 | 4e | −0.9430 | 1.6111 | 0.3571 | 1.9851 | 0.1712 | 0.1084 |
6 | 4f | −1.1580 | 1.6111 | 0.3555 | 1.9669 | 0.1631 | 0.1085 |
7 | 4g | −1.7230 | 1.5946 | 0.3558 | 1.9135 | 0.1708 | 0.1088 |
8 | 4h | −1.8170 | 1.5946 | 0.3533 | 1.9134 | 0.1655 | 0.1088 |
9 | 4i | −1.9790 | 1.5278 | 0.3575 | 1.9133 | 0.1603 | 0.1082 |
10 | 4j | −2.2840 | 1.4872 | 0.3595 | 1.9132 | 0.1601 | 0.0821 |
11 | 4k | −2.2500 | 1.4872 | 0.3577 | 1.9133 | 0.1602 | 0.0872 |
12 | 4l | −2.2760 | 1.4872 | 0.3588 | 1.9133 | 0.1601 | 0.0885 |
13 | 4m | −2.3780 | 1.5250 | 0.3658 | 1.9138 | 0.1598 | 0.0751 |
14 | 4n | −2.3270 | 1.5250 | 0.3558 | 1.9133 | 0.1721 | 0.0735 |
15 | 4o | −2.3410 | 1.5250 | 0.3616 | 1.9135 | 0.1608 | 0.0771 |
16 | 4p | −2.3150 | 1.4688 | 0.3342 | 1.9125 | 0.1610 | 0.0843 |
17 | 4q | −0.9210 | 1.5333 | 0.3441 | 1.9135 | 0.2228 | 0.0668 |
18 | 4r | −1.6480 | 1.5000 | 0.3435 | 1.9135 | 0.1607 | 0.1074 |
19 | 5a | −1.2250 | 1.6111 | 0.3597 | 1.9820 | 0.1635 | 0.1077 |
20 | 5b | −1.2490 | 1.6111 | 0.3598 | 1.9820 | 0.1647 | 0.1078 |
21 | 5c | −1.2020 | 1.6111 | 0.3514 | 1.9838 | 0.1594 | 0.1080 |
22 | 5d | −1.1270 | 1.6111 | 0.3596 | 1.9667 | 0.1736 | 0.1079 |
23 | 5e | −1.1860 | 1.6111 | 0.3581 | 1.9788 | 0.1649 | 0.1081 |
24 | 5f | −1.8980 | 1.5946 | 0.3563 | 1.9132 | 0.1670 | 0.1092 |
25 | 5g | −2.2320 | 1.5278 | 0.3602 | 1.9131 | 0.1590 | 0.1068 |
26 | 5h | −2.3340 | 1.4872 | 0.3643 | 1.9126 | 0.1546 | 0.0871 |
27 | 5i | −2.2590 | 1.4872 | 0.3603 | 1.9131 | 0.1587 | 0.0848 |
28 | 5j | −2.3170 | 1.4872 | 0.3614 | 1.9131 | 0.1585 | 0.0859 |
29 | 5k | −2.4650 | 1.5250 | 0.3741 | 1.9121 | 0.1568 | 0.0710 |
30 | 5l | −2.4530 | 1.5250 | 0.3593 | 1.9131 | 0.1752 | 0.0718 |
31 | 5m | −2.2400 | 1.4286 | 0.3432 | 1.9123 | 0.1578 | 0.0713 |
32 | 5n | −1.0120 | 1.5333 | 0.3472 | 1.9131 | 0.2218 | 0.0659 |
33 | 5o | −2.6170 | 1.3333 | 0.3407 | 1.9117 | 0.1409 | 0.0717 |
34 | 5p | −2.6980 | 1.3636 | 0.3408 | 1.9117 | 0.1409 | 0.0687 |
35 | 5q | −2.6320 | 1.3636 | 0.3346 | 1.9118 | 0.1471 | 0.0822 |
36 | 5r | −2.7160 | 1.4000 | 0.3412 | 1.9117 | 0.1406 | 0.0712 |
37 | 6a | −0.8850 | 1.6111 | 0.3569 | 1.9820 | 0.1729 | 0.1084 |
38 | 6b | −0.9660 | 1.6111 | 0.3574 | 1.9820 | 0.1703 | 0.1085 |
39 | 6c | −1.0120 | 1.6111 | 0.3547 | 1.9817 | 0.1736 | 0.1085 |
40 | 6d | −0.9120 | 1.6111 | 0.3571 | 1.9667 | 0.1726 | 0.1085 |
41 | 6e | −0.9870 | 1.6111 | 0.3558 | 1.9669 | 0.1705 | 0.1085 |
42 | 6f | −1.8640 | 1.5278 | 0.3577 | 1.9133 | 0.1700 | 0.1082 |
43 | 6g | −2.2020 | 1.4872 | 0.3573 | 1.9138 | 0.1690 | 0.0823 |
44 | 6h | −2.0990 | 1.4872 | 0.3579 | 1.9133 | 0.1698 | 0.0868 |
45 | 6i | −2.1350 | 1.4872 | 0.3590 | 1.9133 | 0.1699 | 0.0884 |
46 | 6j | −2.2100 | 1.5250 | 0.3665 | 1.9126 | 0.1701 | 0.0746 |
47 | 6k | −2.1330 | 1.5250 | 0.3569 | 1.9133 | 0.1742 | 0.0727 |
48 | 6l | −2.1880 | 1.5250 | 0.3632 | 1.9134 | 0.1692 | 0.0769 |
49 | 6m | −2.2390 | 1.4688 | 0.3344 | 1.9126 | 0.1702 | 0.0841 |
50 | 6n | −1.3850 | 1.5000 | 0.3468 | 1.9133 | 0.1689 | 0.1081 |
51 | 6o | −2.3840 | 1.3333 | 0.3340 | 1.9117 | 0.1719 | 0.0700 |
52 | 6p | −2.4250 | 1.3636 | 0.3340 | 1.9117 | 0.1720 | 0.0694 |
Descriptor No. | X | ±ΔX | t-Text | Descriptor |
---|---|---|---|---|
0 | −2.4230 × 10 | 4.1535 | −3.0433 | Intercept |
1 | −6.2613 × 10−1 | 5.2603 × 10−1 | −1.1903 | No a |
2 | −1.0225 × 10 | 2.9561 | −3.4591 | qCmax b |
3 | 1.2075 × 10 | 8.0165 × 10−1 | 15.0631 | MAOEP c |
4 | 1.2464 × 10 | 2.0587 | 6.0544 | qHmax d |
5 | 1.6086 × 10 | 1.8059 | 8.9076 | qHmin e |
No. | Compd. | Calc. pIC50 | Exp. pIC50 | Difference | No. | Compd. | Calc. pIC50 | Exp. pIC50 | Difference |
---|---|---|---|---|---|---|---|---|---|
1 | 4a | −1.1403 | −1.1450 | 0.0047 | 27 | 5i | −2.3856 | −2.2590 | −0.1266 |
2 | 4b | −1.0128 | −0.9540 | −0.0588 | 28 | 5j | −2.3869 | −2.3170 | −0.0699 |
3 | 4c | −1.0988 | −1.1050 | 0.0062 | 29 | 5k | −2.5972 | −2.4650 | −0.1322 |
4 | 4d | −1.2533 | −1.1940 | −0.0593 | 30 | 5l | −2.3140 | −2.4530 | 0.1390 |
5 | 4e | −0.8153 | −0.9430 | 0.1277 | 31 | 5m | −2.2529 | −2.2400 | −0.0129 |
6 | 4f | −1.1974 | −1.1580 | −0.0394 | 32 | 5n | −0.9584 | −1.0120 | 0.0536 |
7 | 4g | −1.7783 | −1.7230 | −0.0553 | 33 | 5o | −2.6263 | −2.6170 | −0.0093 |
8 | 4h | −1.7431 | −1.8170 | 0.0739 | 34 | 5p | −2.8078 | −2.6980 | −0.1098 |
9 | 4i | −2.0285 | −1.9790 | −0.0495 | 35 | 5q | −2.4778 | −2.6320 | 0.1542 |
10 | 4j | −2.3147 | −2.2840 | −0.0307 | 36 | 5r | −2.8579 | −2.7160 | −0.1419 |
11 | 4k | −2.2508 | −2.2500 | −0.0008 | 37 | 6a | −0.9917 | −0.8850 | −0.1067 |
12 | 4l | −2.2089 | −2.2760 | 0.0671 | 38 | 6b | −1.0220 | −0.9660 | −0.0560 |
13 | 4m | −2.3273 | −2.3780 | 0.0507 | 39 | 6c | −0.9105 | −1.0120 | 0.1015 |
14 | 4n | −2.2477 | −2.3270 | 0.0793 | 40 | 6d | −1.0028 | −0.9120 | −0.0908 |
15 | 4o | −2.2751 | −2.3410 | 0.0659 | 41 | 6e | −1.0382 | −0.9870 | −0.0512 |
16 | 4p | −2.3821 | −2.3150 | −0.0671 | 42 | 6f | −1.8806 | −1.8640 | −0.0166 |
17 | 4q | −1.0839 | −0.9510 | −0.1329 | 43 | 6g | −2.1368 | −2.2020 | 0.0652 |
18 | 4r | −1.6793 | −1.6480 | −0.0313 | 44 | 6h | −2.0781 | −2.0990 | 0.0209 |
19 | 5a | −1.1940 | −1.2250 | 0.0310 | 45 | 6i | −2.0438 | −2.1350 | 0.0912 |
20 | 5b | −1.2255 | −1.2490 | 0.0235 | 46 | 6j | −2.2545 | −2.2100 | −0.0445 |
21 | 5c | −1.1129 | −1.2020 | 0.0891 | 47 | 6k | −2.1958 | −2.1330 | −0.0628 |
22 | 5d | −1.1579 | −1.1270 | −0.0309 | 48 | 6l | −2.0901 | −2.1880 | 0.0979 |
23 | 5e | −1.1386 | −1.1860 | 0.0474 | 49 | 6m | −2.1068 | −2.2390 | 0.1322 |
24 | 5f | −1.8257 | −1.8980 | 0.0723 | 50 | 6n | −1.5095 | −1.3850 | −0.1245 |
25 | 5g | −2.2060 | −2.2320 | 0.0260 | 51 | 6o | −2.3109 | −2.3840 | 0.0731 |
26 | 5h | −2.2643 | −2.3340 | 0.0697 | 52 | 6p | −2.4467 | −2.4250 | −0.0217 |
Training Set | N | R2 | F | S2 | Test Set | N | R2 | F | S2 |
---|---|---|---|---|---|---|---|---|---|
A + B | 34 | 0.9862 | 211.53 | 0.0095 | C | 18 | 0.9896 | 214.65 | 0.0086 |
B + C | 35 | 0.9797 | 201.69 | 0.0112 | A | 17 | 0.9807 | 204.11 | 0.0104 |
A + C | 35 | 0.9841 | 207.43 | 0.0090 | B | 17 | 0.9862 | 209.81 | 0.0092 |
Average | 0.9833 | 206.83 | 0.0099 | Average | 0.9855 | 209.52 | 0.0094 |
2.4. Cytotoxic Activity of the Representative Compounds against Human Tumor Cells Line (HepG2)
No. | Compd. | IC50 (μM) (against C. lagenarium) | IC50 (μM) (against HepG2 Cell Line) |
---|---|---|---|
1 | 4b | 8.99 | 22.4 |
2 | 4e | 8.76 | 21.7 |
3 | 4g | 52.87 | 18.3 |
4 | 4i | 95.38 | 5.3 |
5 | 4k | 177.96 | 28.5 |
6 | 4o | 219.44 | 25.0 |
7 | 4p | 206.51 | 19.5 |
8 | 4q | 8.93 | 27.3 |
9 | 5a | 16.77 | 28.4 |
10 | 5d | 13.41 | 35.6 |
11 | 5i | 181.69 | 85.2 |
12 | 5l | 283.99 | 29.0 |
13 | 5m | 173.74 | 23.8 |
14 | 5p | 499.33 | >131.7 |
15 | 5r | 519.42 | 38.4 |
16 | 6a | 7.68 | 30.2 |
17 | 6d | 8.17 | 20.9 |
18 | 6f | 73.14 | 18.5 |
19 | 6g | 159.33 | 22.0 |
20 | 6l | 154.27 | 58.6 |
21 | 6n | 24.25 | 15.7 |
22 | 6o | 242.03 | >108.2 |
23 | 4 | 160.63 | 23.3 |
24 | 6 | 117.12 | 17.9 |
3. Materials and Methods
3.1. General Information
3.2. Synthetic Procedures
3.2.1. General Synthetic Procedure for the Intermediate Compounds
3.2.2. General Synthetic Procedure for Ester Compounds
3.2.3. General Synthetic Procedure for Ether Compounds
3.3. Fungicidal Activity Bioassay
3.3.1. Preparation of Spore Suspension
3.3.2. Spore Germination Assay
3.4. Building and Validation of the QSAR Model
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shimizu, M.; Yazawa, S.; Ushijima, Y. A promising strain of endophytic Streptomyces sp. for biological control of cucumber anthracnose. J. Gen. Plant Pathol. 2009, 75, 27–36. [Google Scholar] [CrossRef]
- Haverkort, A.; Boonekamp, P.; Hutten, R.; Jacobsen, E.; Lotz, L.; Kessel, G.; Visser, R.; van der Vossen, E. Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res. 2008, 51, 47–57. [Google Scholar] [CrossRef]
- Brase, S.; Encinas, A.; Keck, J.; Nising, C.F. Chemistry and biology of mycotoxins and relatedfungal metabolites. Chem. Rev. 2009, 109, 3903–3990. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; Talbot, N.J. Fungal physiology—A future perspective. Microbiology 2009, 155, 3810–3815. [Google Scholar] [CrossRef] [PubMed]
- Kuan, C.P.; Wu, M.T.; Huang, H.C.; Chang, H. Rapid detection of Colletotrichum lagenarium, causal agent of anthracnose of cucurbitaceous crops, by PCR and real-time PCR. J. Phytopathol. 2011, 159, 276–282. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dai, G. Antifungal activity of plant extracts against Colletotrichum lagenarium, the causal agent of anthracnose in cucumber. J. Sci. Food Agric. 2012, 92, 1937–1943. [Google Scholar] [CrossRef] [PubMed]
- Dodds, P.N.; Rathjen, J.P. Towards an integrated view of plant pathogen interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Barrios, F.J.; Mark, V.R.; David, A.C. Semisynthetic Derivatives of Sesquiterpene Lactones by Palladium-Catalyzed Arylation of the α-Methylene-γ-lactone Substructure. J. Org. Chem. 2009, 74, 7176–7179. [Google Scholar] [CrossRef] [PubMed]
- Ravinder, R.; Laura, J.A.; Le, T.; Christopher, D.T.; Amy, R.H. Cross Metathesis of α-Methylene Lactones II: γ- and δ-Lactones. Org. Lett. 2007, 9, 1699–1701. [Google Scholar]
- Yusuke, M.; Masaki, T. Construction of spiro-Fused 2-oxindole/α-methylene-γ-Butyrolactone Systems with extremely high enantioselectivity via Indium-Catalyzed amide allylation of N methyl isatin. Org. Lett. 2013, 15, 6182–6185. [Google Scholar]
- Irakusne, L.; Santiago, R.; Javier, I.; Florenci, V. Highly Stereoselective Epoxidation of α-Methyl-γ-hydroxy-α,β-unsaturated Esters: Rationalization and Synthetic Applications. J. Org. Chem. 2007, 72, 6614–6617. [Google Scholar]
- Antonio, G.G.; Margarita, H.S.; Juan, I.P. Synthesis and Antiproliferative Activityof a New Compound Containing an α-Methylene-γ-Lactone Group. J. Med. Chem. 2002, 45, 2358–2361. [Google Scholar]
- Romeo, R.; Pier, G.B.; Mojgan, A.T.; Jaime, Bermejo; Francisco, E.; Monica, B.; Roberto, G. Design, Synthesis, and Biological Evaluation of Hybrid Molecules Containing α-Methylene-γ-Butyrolactones and α-Bromoacryloyl Moieties. J. Med. Chem. 2005, 48, 7906–7910. [Google Scholar]
- Miyazawa, M.; Shimabayashi, H.; Hayashi, S.; Hashimoto, S.; Nakamura, S.; Kosaka, H.; Kameoka, H. Synthesis and Biological Activity of α-Methylene-γ-lactones as New Aroma Chemicals. J. Agric. Food Chem. 2000, 48, 5406–5410. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.T.; Zhang, Y.M.; Wang, J.R.; Zhang, X. Synthesis and antifungal activities of carabrone derivatives. Chin. J. Pestic. Sci. 2007, 9, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.T.; Ma, Z.Q.; Wang, J.R.; Wang, Z.H.; Su, Z.S.; Li, G.Z.; Zhang, X. Carabrane Type Sesquiterpene Lactone Compound with Sterilization Activity Separated from Carpesium macrocephalum Franch.et Sav and Its Application. China Patent ZL 200,610,104,867, 25 June 2009. [Google Scholar]
- Feng, J.T.; Ma, Z.Q.; Li, J.; He, J.; Xu, H.; Zhang, X. Synthesis and antifungal activity of carabrone derivatives. Molecules 2010, 15, 6485–6492. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.T.; Wang, H.; Ren, S.X.; He, J.; Liu, Y.; Zhang, X. Synthesis and Antifungal Activities of Carabrol Ester Derivatives. J. Agric. Food Chem. 2012, 60, 3817–3823. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.T.; Wang, D.L.; Wu, Y.L.; Yan, H.; Zhang, X. New antifungal scaffold derived from a natural pharmacophore: Synthesis of α-methylene-γ-butyrolactone derivatives and their antifungal activity against Colletotrichum lagenarium. Bioorg. Med. Chem. Lett. 2013, 23, 4393–4397. [Google Scholar]
- Gao, Y.; Li, J.; Song, Z.; Song, J.; Shang, S.; Xiao, G.; Wan, Z.; Rao, X. Turning renewable resources into value-added products: Development of rosin-based insecticide candidates. Ind. Crop. Prod. 2015, 76, 660–671. [Google Scholar] [CrossRef]
- García, I.; Fall, Y.; Gómez, G.; González-Díaz, H. First computational chemistry multi-target model for anti-Alzheimer, anti-parasitic, anti-fungi, and anti-bacterial activity of GSK-3 inhibitors in vitro, in vivo, and in different cellular lines. Mol. Divers. 2011, 15, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Prado-Prado, F.J.; Borges, F.; Perez-Montoto, L.G.; González-Díaz, H. Multi-target spectral moment: QSAR for antifungal drugs vs. different fungi species. Eur. J. Med. Chem. 2009, 44, 4051–4056. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, P.K.; Foubelo, F.; Yus, M. Direct indium-promoted preparation of α-methylene-γ-lactones from 2-(bromomethyl) acrylic acid and carbonyl compounds. Tetrahedron 1999, 55, 10779–10788. [Google Scholar] [CrossRef]
- Song, J.; Wang, Z.; Findlater, A.; Han, Z.; Jiang, Z.; Chen, J.; Zheng, W.; Hyde, S. Terpenoid mosquito repellents: A combined DFT and QSAR study. Bioorg. Med. Chem. Lett. 2013, 23, 1245–1248. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Song, J.; Chen, J.; Song, Z.; Shang, S.; Jiang, Z.; Han, Z. QSAR study of mosquito repellents from terpenoid with a six-member-ring. Bioorg. Med. Chem. Lett. 2008, 18, 2854–2859. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Song, J.; Wang, Z.; Chen, J.; Fan, G.; Song, Z.; Shang, S.; Chen, S.; Wang, P. Molecular interactions between terpenoid mosquito repellents and human-secreted attractants. Bioorg. Med. Chem. Lett. 2014, 24, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, Y.; Shang, S.; Rao, X.J.; Wang, Z. Synthesis and quantitative structure–activity relationship (QSAR) studies of novel rosin-based diamide insecticides. RSC Adv. 2014, 4, 58190–58199. [Google Scholar] [CrossRef]
- Li, J.; Xiao, G.; Shang, S.; Rao, X. A QSAR Study of the Acrylpimaric Acid Derivatives as the Inhibitors of NCI-H460. Lett. Drug Des. Discov. 2014, 11, 59–66. [Google Scholar] [CrossRef]
- Karelson, M.; Lobanov, V.S.; Katritzky, A.R. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem. Rev. 1996, 96, 1027–1043. [Google Scholar] [CrossRef] [PubMed]
- Thanikaivelan, P.; Subramanian, V.; Rao, J.R.; Nair, B.U. Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem. Phys. Lett. 2000, 323, 59–70. [Google Scholar] [CrossRef]
- Ellis, G.W.L.; Tavares, D.F.; Rauk, A. The mechanism of an intramolecular Michael addition: A MNDO study. Can. J. Chem. 1985, 63, 3510–3515. [Google Scholar] [CrossRef]
- Lavallee, J.F.; Berthiaume, G.; Deslongchamps, P. Intramolecular Michael addition of cyclic β-ketoester on conjugated acetylenic ketone. Tetrahedron Lett. 1986, 27, 5455–5458. [Google Scholar] [CrossRef]
- Kalani, K.; Yadav, D.; Khan, F.; Srivastava, S.; Suri, N. Pharmacophore, QSAR, and ADME based semisynthesis and in vitro evaluation of ursolic acid analogs for anticancer activity. J. Mol. Model. 2012, 18, 3389–3413. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.P.; Kovarich, S.; Gramatica, P. QSAR Model Reproducibility and Applicability: A Case Study of Rate Constants of Hydroxyl Radical Reaction Models Applied to Polybrominated Diphenyl Ethers and (Benzo-)Triazoles. J. Comput. Chem. 2011, 32, 2386–2396. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.J.; Nour, A.M.M.; Khalid, S.A.; Kaiser, M.; Brun, R. Quantitative Structure-Antiprotozoal Activity Relationships of Sesquiterpene Lactones. Molecules 2009, 14, 2062–2076. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, J.; Waseschaa, M.R.; Schmidt, T.J. The Influence of Glutathione and Cysteine Levels on the Cytotoxicity of Helenanolide Type Sesquiterpene Lactones Against KB Cells. Bioorg. Med. Chem. 2001, 9, 2189–2194. [Google Scholar] [CrossRef]
- Li, S.K.; Ji, Z.Q.; Zhang, J.W.; Guo, Z.Y.; Wu, W.J. Synthesis of 1-Acyl-3-isopropenylbenzimidazolone Derivatives and Their Activity against Botrytis cinerea. J. Agric. Food Chem. 2010, 58, 2668–2672. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 03; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Katritsky, A.; Karelson, M.; Lobanov, V.S.; Dennington, R.; Keith, T.A.; Keith, R.D.A.T. Codessa 2.7.15; Semichem, Inc.: Shawnee, KS, USA, 2004. [Google Scholar]
- Dewar, M.J.S.; Holder, A.J.; Roy, I.; Dennington, D.; Liotard, D.A.; Truhlar, D.G.; Keith, T.A.; Millam, J.M.; Harris, C.D. AMPAC 9.3.1; Semichem, Inc.: Shawnee, KS, USA, 2004. [Google Scholar]
- Li, J.; Tian, X.; Gao, Y.; Shang, S.; Feng, J.; Zhang, X. A value-added use of volatile turpentine: Antifungal activity and QSAR study of β-pinene derivatives against three agricultural fungi. RSC Adv. 2015, 5, 66947–66955. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds 4a–r, 5a–r and 6a–p are available from the authors.
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wang, D.; Gao, Y.; Feng, J.; Zhang, X. New α-Methylene-γ-Butyrolactone Derivatives as Potential Fungicidal Agents: Design, Synthesis and Antifungal Activities. Molecules 2016, 21, 130. https://doi.org/10.3390/molecules21020130
Wu Y, Wang D, Gao Y, Feng J, Zhang X. New α-Methylene-γ-Butyrolactone Derivatives as Potential Fungicidal Agents: Design, Synthesis and Antifungal Activities. Molecules. 2016; 21(2):130. https://doi.org/10.3390/molecules21020130
Chicago/Turabian StyleWu, Yongling, Delong Wang, Yanqing Gao, Juntao Feng, and Xing Zhang. 2016. "New α-Methylene-γ-Butyrolactone Derivatives as Potential Fungicidal Agents: Design, Synthesis and Antifungal Activities" Molecules 21, no. 2: 130. https://doi.org/10.3390/molecules21020130
APA StyleWu, Y., Wang, D., Gao, Y., Feng, J., & Zhang, X. (2016). New α-Methylene-γ-Butyrolactone Derivatives as Potential Fungicidal Agents: Design, Synthesis and Antifungal Activities. Molecules, 21(2), 130. https://doi.org/10.3390/molecules21020130