Bioconversion of Rebaudioside I from Rebaudioside A
Abstract
:1. Introduction
Compound | Retention Time | MW | Peak Area |
---|---|---|---|
Rebaudioside I (5) | 11.670 | 1129.16 | 693,949 |
Rebaudioside A (4) | 12.643 | 967.02 | 202,093 |
2. Results and Discussion
Sugar | Position | 1H-NMR | 13C-NMR |
---|---|---|---|
1 | 0.74 t (11.6), 1.75 m | 40.7 | |
2 | 1.44 m, 2.20 m | 19.4 | |
3 | 1.02 m, 2.35 m | 38.5 | |
4 | --- | 44.0 | |
5 | 1.03 m | 57.2 | |
6 | 1.90 m, 2.33 m | 22.2 | |
7 | 1.29 m, 1.31 m | 41.7 | |
8 | --- | 42.3 | |
9 | 0.88 d (6.3) | 54.1 | |
10 | --- | 39.8 | |
11 | 1.67 m, 1.70 m | 20.5 | |
12 | 1.98 m, 2.28 m | 37.3 | |
13 | --- | 86.7 | |
14 | 1.78 m, 2.59 d (11.9) | 44.3 | |
15 | 2.04 brs | 47.6 | |
16 | --- | 154.0 | |
17 | 5.02 s, 5.67 s | 104.8 | |
18 | 1.22 s | 28.4 | |
19 | --- | 176.9 | |
20 | 1.26 s | 15.7 | |
I | 1' | 6.14 d (8.2) | 95.3 |
2' | 4.18 m | 72.5 | |
3' | 4.27 m | 89.4 | |
4' | 4.25 m | 69.2 | |
5' | 3.93 m | 78.2–78.8 † | |
6' | 4.27 m, 4.37 m | 61.7 | |
II | 1'' | 5.06 d (7.9) | 98.0 |
2'' | 4.35 m | 80.6 | |
3'' | 4.20 m | 87.5 | |
4'' | 3.97 m | 70.1 | |
5'' | 3.80 m | 77.6 | |
6'' | 4.18 m, 4.49 m | 62.5 | |
III | 1''' | 5.57 d (7.7) | 104.6 |
2''' | 4.21 m | 76.3 | |
3''' | 4.27 m | 78.2–78.6 † | |
4''' | 4.25 m | 72.1 | |
5''' | 3.94 m | 78.2–78.8 † | |
6''' | 4.41 m, 4.53 m | 63.1 | |
IV | 1'''' | 5.38 d (7.9) | 104.7 |
2'''' | 4.01 m | 75.3 or 75.5 | |
3'''' | 4.28 m | 78.2–78.6 † | |
4'''' | 4.11 m | 72.1 | |
5'''' | 4.13 m | 78.2–78.6 † | |
6'''' | 4.25 m, 4.58 m | 62.3 or 62.4 | |
V | 1''''' | 5.29 d (7.9) | 105.0 |
2''''' | 4.04 m | 75.3 or 75.5 | |
3''''' | 4.27 m | 78.2–78.6 † | |
4''''' | 4.12 m | 71.5 or 71.6 | |
5''''' | 4.05 m | 78.5 or 78.6 † | |
6''''' | 4.26 m, 4.56 m | 62.3 or 62.4 |
3. Experimental Section
3.1. General Experimental Procedures for Rebaudioside I (5)
3.1.1. Isolation of Rebaudioside I
3.1.2. Nuclear Magnetic Resonance
3.1.3. Mass Spectrometry
3.2. Bioconversion Reaction
4. Conclusions
Supplementary Materials
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lewis, W.H. Early uses of Stevia rebaudiana (Asteraceae) leaves as a sweetener in Paraguay. Econ. Bot. 1992, 46, 336–337. [Google Scholar]
- Ceunen, S; Geuns, J.M.C. Steviol Glycosides: Chemical Diversity, Metabolism, and Function. J. Nat. Prod. 2013, 76, 1201–1228. [Google Scholar]
- Chaturvedula, V.S.P.; Rhea, J.; Milanowski, D.; Mocek, U.; Prakash, I. Two minor diterpenoid glycosides from the leaves of Stevia rebaudiana. Nat. Prod. Commun. 2011, 6, 175–178. [Google Scholar]
- Kohda, H.; Kasai, R.; Yamsaki, K.; Murakami, K.; Tanaka, O. New sweet diterpene glucosides from Stevia rebaudiana. Phytochemistry 1976, 15, 981–983. [Google Scholar] [CrossRef]
- Kobayashi, M.; Horikawa, S.; Degrandi, I.H.; Ueno, J.; Mitsuhashi, H. Dulcosides A and B, new diterpene glycosides from Stevia rebaudiana. Phytochemistry 1977, 16, 1405–1408. [Google Scholar] [CrossRef]
- Starratt, A.N.; Kirby, C.W.; Pocs, R.; Brandle, J.E. Rebaudioside F, a diterepene glycoside from Stevia rebaudiana. Phytochemistry 2002, 59, 367–370. [Google Scholar] [CrossRef]
- Sakamoto, I.; Yamasaki, K.; Tanaka, O. Rebaudioside-C, a new sweet diterpene glycosides of Stevia rebaudiana. Chem. Pharm. Bull. 1977, 25, 844–846. [Google Scholar] [CrossRef]
- Sakamoto, I.; Yamasaki, K.; Tanaka, O. Application of 13C-NMR spectroscopy to chemistry of plant glycosides: Rebaudioside-D and -E, new sweet diterpene-glucosides of Stevia rebaudiana Bertoni. Chem. Pharm. Bull. 1977, 25, 3437–3439. [Google Scholar] [CrossRef]
- Ohta, M.; Sasa, S.; Inoue, A.; Tamai, T.; Fujita, I.; Morita, K.; Matsuura, F. Characterization of novel steviol glycosides from leaves of Stevia rebaudiana Morita. J. Appl. Glycosci. 2010, 57, 199–209. [Google Scholar] [CrossRef]
- Mosettig, E.; Beglinger, U.; Dolder, F.; Lichti, H.; Quitt, P.; Waters, J.A. The absolute configuration of steviol and isosteviol. J. Am. Chem. Soc. 1963, 85, 2305–2309. [Google Scholar] [CrossRef]
- Kinghorn, A.A.D.; Soejarto, D.D.; Nanayakkara, N.P.D.; Compadre, C.M.; Makapugay, H.C.; Hovanec-Brown, J.M.; Medon, P.J.; Kamath, S.K. A phytochemical screening procedure for sweet ent-Kaurene glycosides in the genus Stevia. J. Nat. Prod. 1984, 47, 439–444. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Rodenburg, D.L.; Alves, K.; Fronczek, F.R.; McChesney, J.D.; Wu, C.; Nettles, B.J.; Venkataraman, S.V.; Jaksch, F. Minor Diterpene Glycosides from the Leaves of Stevia rebaudiana. J. Nat. Prod. 2014, 77, 1231–1235. [Google Scholar] [CrossRef]
- JEFCA. Steviol glycosides. In Combined Compendium of Food Additive Specifications [FAO JECFA Monographs 10], Proceedings of the 73rd Joint FAO/WHO Expert Committee on Food Additives (JECFA), Geneva, Switzerland, 8–17 June 2010; Food and Agriculture Organization of the United nations (FAO), Joint FAO/WHO Expert Committee on Food Additives (JECFA): Rome, Italy, 2010. [Google Scholar]
- Prakash, I.; Chaturvedula, V.S.P.; Markosyan, A. Isolation, characterization and sensory evaluationof a Hexa-d-glucopyranosyl diterpene from Stevia rebaudiana. Nat. Prod. Commun. 2013, 8, 1523–1526. [Google Scholar]
- Prakash, I.; Markosyan, A.; Bunders, C. Development of Next Generation Stevia Sweeteners: Rebaudioside M. Foods 2014, 3, 162–175. [Google Scholar]
- Richman, A.; Swanson, A.; Humphrey, T.; Chapman, R.; McGarvey, B.; Pocs, R.; Brandle, J.E. Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J. 2005, 41, 55–67. [Google Scholar]
- Philippe, R.; de Mey, M.; Anderson, J.; Kumaran Ajikumar, P. Biotechnological production of natural zero-calorie sweeteners. Curr. Opin. Biotechnol. 2014, 26, 155–161. [Google Scholar] [CrossRef]
- Kumar, H.; Kaul, K.; Bajpai-Gupta, S.; Kaul, V.; Kumar, S. A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni). Gene 2012, 492, 276–284. [Google Scholar] [CrossRef]
- Humphrey, T.; Richman, A.; Menassa, R.; Brandle, J.E. Spatial organization of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis. Plant Mol. Biol. 2006, 61, 47–62. [Google Scholar] [CrossRef]
- Brandle, J.E.; Telmer, P.G. Steviol glycoside biosynthesis. Phytochemistry 2007, 68, 1855–1863. [Google Scholar] [CrossRef]
- Mohahed, A.; Ceunen, S.; Geuns, J.M.C.; van den Ende, W.; de Ley, M. UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides. J. Plant Physiol. 2011, 168, 1136–1141. [Google Scholar] [CrossRef]
- Mikkelsen, M.D.; Hansen, J.; Simon, E.; Brianza, F.; Semmler, A.; Olsson, K.; Carlsen, S.; During, L.; Ouspenski, A.; Hicks, P. Methods for Improved Production of Redaudioside D and Rebaudioside M. WO2014/122227 14 August 2014. [Google Scholar]
- Markosyan, A.; Prakash, I.; Prakash Chaturvedula, V.S. High-purity Steviol Glycosides. WO2013/176738, 28 November 2013. [Google Scholar]
- Prakash, I.; Bunders, C.; Devkota, K.P.; Charan, R.D.; Ramirez, C.; Priedemann, C.; Markosyan, A. Isolation and Characterization of a Novel Rebaudioside M Isomer from a Bioconversion Reaction of Rebaudioside A and NMR Comparison Studies of Rebaudioside M Isolated from Stevia rebaudiana Bertoni and Stevia rebaudiana Morita. Biomolecules 2014, 4, 374–389. [Google Scholar] [CrossRef]
- Prakash, I.; Bunders, C.; Devkota, K.P.; Charan, R.D.; Ramirez, C.; Priedemann, C.; Markosyan, A. Isolation and Structure Elucidation of Rebaudioside D2 from Bioconversion Reaction of Rebaudioside A to Rebaudioside D. Nat. Prod. Commun. 2014, 9, 1135–1138. [Google Scholar]
- Morita, T.; Isao, F.; Fumito, M.; Masaya, O. New Steviol Glycoside. U.S. Patent 2011/0183056, 28 July 2011. [Google Scholar]
- Chaturvedula, V.S.P.; Clos, J.F.; Rhea, J.; Milanowski, D.; Mocek, U.; DuBois, G.E.; Prakash, I. Minor diterpenoid glycosides from the leaves of Stevia rebaudiana. Phytochem. Lett. 2011, 4, 209–212. [Google Scholar] [CrossRef]
- Chaturvedula, V.S.P.; Mani, U.; Prakash, I. Structures of the novel α-glucosyl linked diterpene glycosides from Stevia rebaudiana. Carbohydr. Res. 2011, 346, 2034–2038. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakash, I.; Bunders, C.; Devkota, K.P.; Charan, R.D.; Ramirez, C.; Snyder, T.M.; Priedemann, C.; Markosyan, A.; Jarrin, C.; Halle, R.T. Bioconversion of Rebaudioside I from Rebaudioside A. Molecules 2014, 19, 17345-17355. https://doi.org/10.3390/molecules191117345
Prakash I, Bunders C, Devkota KP, Charan RD, Ramirez C, Snyder TM, Priedemann C, Markosyan A, Jarrin C, Halle RT. Bioconversion of Rebaudioside I from Rebaudioside A. Molecules. 2014; 19(11):17345-17355. https://doi.org/10.3390/molecules191117345
Chicago/Turabian StylePrakash, Indra, Cynthia Bunders, Krishna P. Devkota, Romila D. Charan, Catherine Ramirez, Tara M. Snyder, Christopher Priedemann, Avetik Markosyan, Cyrille Jarrin, and Robert Ter Halle. 2014. "Bioconversion of Rebaudioside I from Rebaudioside A" Molecules 19, no. 11: 17345-17355. https://doi.org/10.3390/molecules191117345