HPLC, NMR and MALDI-TOF MS Analysis of Condensed Tannins from Lithocarpus glaber Leaves with Potent Free Radical Scavenging Activity
Abstract
:Introduction
Results and Discussion
Total phenolics and condensed tannins contents
Thiolysis with cysteamine followed by reversed-phase HPLC
Concentration (mg/g dried tannins) | |
---|---|
Aminoethylthio catechin | 8.38 ± 0.58 |
Catechin | 18.53 ± 0.63 |
Epicatechin | 222.73 ± 2.51 |
Aminoethylthio gallocatechin | 258.72 ± 4.21 |
Gallocatechin | 65.93 ± 2.22 |
Epigallocatechin | 247.08 ± 7.15 |
13C-NMR analysis of condensed tannins
MALDI-TOF MS analysis
Polymer | Number of catechin units | Number of gallocatechin units | Calculated [M + Cs]+ | Observed [M + Cs]+ |
---|---|---|---|---|
Trimer | 3 | 0 | 999 | 998.81 |
2 | 1 | 1015 | 1014.82 | |
1 | 2 | 1031 | 1030.88 | |
Tetramer | 4 | 0 | 1287 | 1286.76 |
3 | 1 | 1303 | 1302.75 | |
2 | 2 | 1319 | 1318.78 | |
1 | 3 | 1335 | 1334.71 | |
Pentamer | 5 | 0 | 1575 | 1574.78 |
4 | 1 | 1591 | 1590.84 | |
3 | 2 | 1607 | 1606.83 | |
2 | 3 | 1623 | 1622.85 | |
Hexamer | 6 | 0 | 1863 | 1862.82 |
5 | 1 | 1879 | 1878.82 | |
4 | 2 | 1895 | 1894.83 | |
3 | 3 | 1911 | 1910.78 | |
Heptamer | 7 | 0 | 2151 | 2151.83 |
6 | 1 | 2167 | 2167.78 | |
5 | 2 | 2183 | 2183.86 | |
4 | 3 | 2199 | 2198.87 | |
Octamer | 8 | 0 | 2439 | 2439.84 |
7 | 1 | 2455 | 2455.86 | |
6 | 2 | 2471 | 2471.78 | |
Nonamer | 9 | 0 | 2727 | 2728.80 |
8 | 1 | 2743 | 2743.85 | |
7 | 2 | 2759 | 2758.79 | |
Decamer | 10 | 0 | 3015 | 3015.83 |
9 | 1 | 3031 | 3031.65 | |
8 | 2 | 3047 | 3048.18 | |
Undecamer | 11 | 0 | 3303 | 3305.33 |
10 | 1 | 3319 | 3320.87 | |
9 | 2 | 3335 | 3336.78 |
Free radical scavenging activity
Conclusions
Experimental
General
Extraction of condensed tannins, characterization and determination of total phenolics and condensed tannins
Cysteamine degradation
Elution condition
MALDI-TOF MS analysis
Free radical scavenging activity
Acknowledgements
References
- Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: comparison of different estimation methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Taylor, A.W. Analysis of proanthocyanidins by high-performance gel permeation chromatography. J. Chromatogr. A. 2003, 995, 99–107. [Google Scholar] [CrossRef]
- Tanner, G.J.; Francki, K.T.; Abrahams, S.; Watson, J.M.; Larkin, P.J.; Ashton, A.R. Proanthocyanidin biosynthesis in plants: purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J. Biol. Chem. 2003, 278, 31647–31656. [Google Scholar]
- Haslam, E. Plant Polyphenols: Vegetable Tannins Revisited. Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Svedstrom, U.; Vuorela, H.; Kostiainen, R.; Huovinen, K.; Laakso, I.; Hiltunen, R. High-performance liquid chromatographic determination of oligomeric procyanidins from dimers up to the hexamer in hawthorn. J. Chromatogr. A. 2002, 968, 53–60. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Murtijaya, J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT-Food Sci. Tech. 2007, 40, 1664–1669. [Google Scholar] [CrossRef]
- Sisti, M.; De Santi, M.; Fraternale, D.; Ninfali, P.; Scoccianti, V.; Brandi, G. Antifungal activity of Rubus ulmifolius Schott standardized in vitro culture. LWT - Food Sci. Tech. 2008, 41, 946–950. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; Scalbert, A. Proanthocyanidins and tannin-like compounds-nature, occurrence, dietary intake, and effects on nutrition and health. J. Sci. Food Agric. 2000, 80, 1094–1117. [Google Scholar] [CrossRef]
- Gulcin, I.; Oktay, M.; Kirecci, E.; Kufrevioglu, O.I. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 2003, 83, 371–382. [Google Scholar]
- Minussi, R.C.; Rossi, M.; Bologna, L.; Cordi, L.; Rotilio, D.; Pastore, G.M.; Duran, N. Phenolic compounds and total antioxidant potential of commercial wines. Food Chem. 2003, 82, 409–416. [Google Scholar] [CrossRef]
- Noferi, M.; Masson, E.; Merlin, A.; Pizzi, A.; Deglise, X. Antioxidant characteristics of hydrolysable and polyflavonoid tannins: an ESR kinetics study. J. Appl. Polym. Sci. 1997, 63, 475–482. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavanoids and phenolic acids. Free Rad. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Tanaka, N.; Shimomura, K.; Ishimaru, K. Tannin production in callus cultures of Quercus acutissima. Phytochemistry 1995, 40, 1151–1154. [Google Scholar] [CrossRef]
- Tam, P.C.F.; Griffiths, D.A. Mycorrhizal associations in Hong Kong Fagaceae. Mycorrhiza 1993, 2, 125–131. [Google Scholar] [CrossRef]
- Hemingway, R.W. Chemistry and Significance of Condensed Tannins. Hemingway, R.W., Karchesy, J.J., Eds.; Plenum Press: New York, USA, 1989; p. 83. [Google Scholar]
- Jerez, M.; Pinelo, M.; Sineiro, J.; Nunez, M.J. Influence of extraction conditions on phenolic yields from pine bark: assessment of procyanidins polymerization degree by thiolysis. Food Chem. 2006, 94, 406–414. [Google Scholar] [CrossRef]
- Guyot, S.; Marnet, N.; Drilleau, J.F. Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J. Agric. Food Chem. 2001, 49, 14–20. [Google Scholar] [CrossRef]
- Guyot, S.; Marnet, N.; Laraba, D.; Sanoner, P.; Drilleau, J.F. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica var. Kermerrien). J. Agric. Food Chem. 1998, 46, 1698–1705. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Jones, G.P. Composition of grape skin proanthocyanidins at different stages of berry development. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef]
- Torres, J.L.; Lozano, C. Chromatographic characterization of proanthocyanidins after thiolysis with cysteamine. Chromatographia 2001, 54, 523–526. [Google Scholar] [CrossRef]
- Czochanska, Z.; Foo, L.Y.; Newman, R.H.; Porter, L.J. Polymeric proanthocyanidins: stereochemistry, structural units and molecular weight. J. Chem. Soc. Perkin Trans. 1. 1980, 2278–2286. [Google Scholar] [CrossRef]
- Pasch, H.; Schrepp, W. MALDI-TOF Mass Spectrometry of Synthetic Polymers. Springer: Berlin Heidelberg, New York, 2003. [Google Scholar]
- Xiang, P.; Lin, Y.M.; Lin, P.; Xiang, C. Effects of adduct ions on matrix-assisted laser desorption/ionization time of flight mass spectrometry of condensed tannins: a prerequisite knowledge. Chin. J. Anal. Chem. 2006, 34, 1019–1022. [Google Scholar] [CrossRef]
- Xiang, P.; Lin, Y.M.; Lin, P.; Xiang, C.; Yang, Z.W.; Lu, Z.M. Effect of cationization reagents on the matrix-assisted laser desorption/ionization time-of-flight mass spectrum of Chinese gallotannins. J. Appl. Polym. Sci. 2007, 105, 859–864. [Google Scholar] [CrossRef]
- Zhang, L.L.; Lin, Y.M. Tannins from Canarium album with potent antioxidant activity. J. Zhejiang Univ. Sci. B. 2008, 9, 407–415. [Google Scholar] [CrossRef]
- Krueger, C.G.; Dopke, N.C.; Treichel, P.M.; Folts, J.; Reed, J.D. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of polygalloyl polyfavan-3-ols in grape seed extract. J. Agric. Food Chem. 2000, 48, 1663–1667. [Google Scholar] [CrossRef]
- Soares, J.R.; Dins, T.C.P.; Cunha, A.P.; Ameida, L.M. Antioxidant activity of some extracts of Thymus zygis. Free Rad. Res. 1997, 26, 469–478. [Google Scholar] [CrossRef]
- Duh, P.D.; Tu, Y.Y.; Yen, G.C. Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). LWT - Food Sci. Tech. 1999, 32, 269–277. [Google Scholar] [CrossRef]
- Lin, Y.M.; Liu, J.W.; Xiang, P.; Lin, P.; Ye, G.F.; Sternberg, L.da.S.L. Tannin dynamics of propagules and leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China. Biogeochemistry 2006, 78, 343–359. [Google Scholar] [CrossRef]
- Graham, H.D. Stabilization of the Prussian blue color in the determination of polyphenols. J. Agric. Food Chem. 1992, 40, 801–805. [Google Scholar] [CrossRef]
- Terrill, T.H.; Rowan, A.M.; Douglas, G.B.; Barry, T.N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agric. 1992, 58, 321–329. [Google Scholar] [CrossRef]
- Braca, A.; Tommasi, N.D.; Bari, L.D.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia terapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef]
- Sample Availability: Samples are available from the authors.
© 2008 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, L.L.; Lin, Y.M. HPLC, NMR and MALDI-TOF MS Analysis of Condensed Tannins from Lithocarpus glaber Leaves with Potent Free Radical Scavenging Activity. Molecules 2008, 13, 2986-2997. https://doi.org/10.3390/molecules13122986
Zhang LL, Lin YM. HPLC, NMR and MALDI-TOF MS Analysis of Condensed Tannins from Lithocarpus glaber Leaves with Potent Free Radical Scavenging Activity. Molecules. 2008; 13(12):2986-2997. https://doi.org/10.3390/molecules13122986
Chicago/Turabian StyleZhang, Liang Liang, and Yi Ming Lin. 2008. "HPLC, NMR and MALDI-TOF MS Analysis of Condensed Tannins from Lithocarpus glaber Leaves with Potent Free Radical Scavenging Activity" Molecules 13, no. 12: 2986-2997. https://doi.org/10.3390/molecules13122986
APA StyleZhang, L. L., & Lin, Y. M. (2008). HPLC, NMR and MALDI-TOF MS Analysis of Condensed Tannins from Lithocarpus glaber Leaves with Potent Free Radical Scavenging Activity. Molecules, 13(12), 2986-2997. https://doi.org/10.3390/molecules13122986