Socio-Economic Indexes for Water Use in Irrigation in a Representative Basin of the Tropical Semiarid Region
Abstract
:1. Introduction
2. Irrigated Agriculture Performance Indicators
2.1. Irrigation Efficiency
2.2. Water Productivity
3. Case Study—Irrigated Agriculture in the Jaguaribe River Basin—CE, Brazil
3.1. Location and Characterization of the Jaguaribe River Basin
3.2. Data Source
3.3. Irrigated Agriculture in the Jaguaribe River Basin
3.4. Production and Irrigation Requirement in the Jaguaribe River Basin
3.5. Net Revenue per Unit of Area
3.6. Performance Indicators of Irrigated Agriculture in the Jaguaribe River Basin
4. Results and Discussion
4.1. Relative Irrigation Supply
4.2. Physical and Economic Water Productivity and Generation of Jobs
4.3. Performance Index of Irrigated Crops in the Jaguaribe River Basin
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Córcoles, J.I.; Frizzone, J.A.; Lima, S.C.R.V.; Mateos, L.; Neale, C.M.U.; Snyder, R.L.; Sousa, F. Irrigation advisory service and performance indicators in Baixo Acaraú Irrigation District, Brazil. Irrig. Drain. 2016, 65, 61–72. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving irrigation water use efficiency: A review of advances, challenges and opportunities in the Australian context. Water 2018, 10, 1771. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.E.; Alcon, F.; Diaz-Espejo, A.; Hernadez-Santana, V.; Cuevas, M.V. Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard. Agric. Water Manag. 2020, 237, 106074. [Google Scholar] [CrossRef]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateos, L.; Almeida, A.C.S.; Frizzone, J.A.; Lima, S.C.R.V. Performance assessment of smallholder irrigation based on an energy-water-yield nexus approach. Agric. Water Manag. 2018, 206, 176–186. [Google Scholar] [CrossRef]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric. Water Manag. 2012, 108, 39–51. [Google Scholar] [CrossRef]
- Heydari, N. Water productivity in agriculture: Challenges in concepts, terms and values. Irrig. Drain. 2014, 63, 22–28. [Google Scholar] [CrossRef]
- Foster, S.S.D.; Perry, C.J. Improving groundwater resource accounting in irrigated areas: A prerequisite for promoting sustainable use. J. Hydrogeol. Hydrol. Eng. 2010, 18, 291–294. [Google Scholar] [CrossRef]
- Perry, C. Accounting for water use: Terminology and implications for saving water and increasing production. Agric. Water Manag. 2011, 98, 1840–1846. [Google Scholar] [CrossRef]
- ADECE—Agência de Desenvolvimento do Estado do Ceará. Estudo Técnico Para a Alocação de Água Destinada à Irrigação no Médio e Baixo Jaguaribe Definindo os Critérios e o Monitoramento—Relatório Final; ADECE—Agência de Desenvolvimento do Estado do Ceará: Fortaleza, Brazil, 2015; 44p. Available online: https://www.adece.ce.gov.br/wp-content/uploads/sites/98/2017/07/relatrio_3.1-7.pdf (accessed on 20 March 2021).
- ADECE—Agência de Desenvolvimento do Estado do Ceará. Estudo Para Definição de Indicadores e Critérios de Uso da Água no Setor Agropecuário—Estudo das Águas: Produto V—Indicadores Socioeconômicos das Áreas Irrigadas—Relatório 05/2018; ADECE—Agência de Desenvolvimento do Estado do Ceará: Fortaleza, Brazil, 2018; p. 64. [Google Scholar]
- SRH—Secretaria de Recursos Hídricos do Estado do Ceará. Plano de Ações Estratégicas de Recursos Hídricos do Ceará. 2018; 171p. Available online: https://www.srh.ce.gov.br/wp-content/uploads/sites/90/2018/07/plano-de-acoes-estrategicas-de-recursos-hidricos-CE_2018.pdf (accessed on 20 March 2021).
- Frizzone, J.A.; Lima, S.C.R.V.; Camargo, D.C.; Costa, F.R.B.; Magalhães, S.B.; Melo, V.G.M.L. Indicators and criteria to define the priority for irrigation water use in the Baixo Jaguaribe Basin, Brasil. Rev. Bras. Agric. Irrig. 2020, 14, 3875–3888. [Google Scholar]
- Cavalcante, A.L.; Suliano, D.C.; Paiva, W.L.; Trompieri Neto, N.; Pontes, P.A.; Lima, C.; Soares, R. Indicadores Econômicos do Ceará 2020 IPECE. 2020. Available online: https://www.ipece.ce.gov.br/wp-content/uploads/sites/45/2020/12/Indicadores_Economicos2020.pdf (accessed on 15 March 2021).
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Burt, C.M.; Clemmens, A.J.; Strelkoff, T.S.; Solomon, K.H.; Bliesner, R.D.; Hardy, L.A.; Howell, T.A.; Eisenhauer, D.E. Irrigation performance measures: Efficiency and uniformity. J. Irrig. Drain. Eng. 1997, 123, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Pereira, H.; Marques, R.C. An analytical review of irrigation efficiency measured using deterministic and stochastic models. Agric. Water Manag. 2017, 184, 28–35. [Google Scholar] [CrossRef]
- Jensen, M.E. Beyond irrigation efficiency. Irrig. Sci. 2007, 25, 233–245. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, C.J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viets, F.G. Fertilizers and the efficient use of water. Adv. Agron. 1962, 14, 223–264. [Google Scholar]
- Vazifedoust, M.; Van Dam, J.C.; Feddes, R.A.; Feizi, M. Increasing water productivity of irrigated crops under limited water supply at field scale. Agric. Water Manag. 2008, 95, 89–102. [Google Scholar] [CrossRef]
- Perry, C.; Steduto, P.; Allen, R.G.; Burt, C.M. Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities. Agric. Water Manag. 2009, 96, 1517–1524. [Google Scholar] [CrossRef] [Green Version]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Alcon, F.; Martín-Ortega, J.; Pedrero, F.; Alarcón, J.J.; Miguel, M.D. Incorporating non-market benefits of reclaimed water into cost-benefit analysis: A case study of irrigated mandarin crops in southern Spain. Water Resour. Manag. 2013, 27, 1809–1820. [Google Scholar] [CrossRef]
- Sousa, A.B.; Melo, R.A.; Silva, D.F. Avaliação climática e dos recursos hídricos da bacia hidrográfica do rio Jaguaribe (CE). Rev. Bras. Geogr. Fís. 2013, 6, 1115–1140. [Google Scholar]
- FUNCEME—Fundação Cearense de Meteorologia e Recursos Hídricos. Postos Pluviométricos. 2017. Available online: http://www.funceme.br/produtos/script/chuvas/Download_de_series_historicas/DownloadChuvasPublico.php (accessed on 15 March 2021).
- INESP—Instituto de Estudos e Pesquisas Para o Desenvolvimento do Estado do Ceará. Caderno Regional da Sub-Bacia do Baixo Juaguaribe; INESP—Instituto de Estudos e Pesquisas Para o Desenvolvimento do Estado do Ceará: Fortaleza, Brazil, 2009; Volume 7, p. 104. [Google Scholar]
- INESP—Instituto de Estudos e Pesquisas Para o Desenvolvimento do Estado do Ceará. Caderno Regional da Sub-Bacia do Alto Juaguaribe; INESP—Instituto de Estudos e Pesquisas Para o Desenvolvimento do Estado do Ceará: Fortaleza, Brazil, 2009; Volume 5, p. 119. [Google Scholar]
- INESP—Instituto de Estudos e Pesquisas Para o Desenvolvimento do Estado do Ceará. Caderno Regional da Sub-Bacia do Médio Juaguaribe; INESP—Instituto de Estudos e Pesquisas Para o Desenvolvimento do Estado do Ceará: Fortaleza, Brazil, 2009; Volume 6, p. 101. [Google Scholar]
- Lima, S.C.R.V.; Souza, F.; Frizzone, J.A.; Camargo, D.C.; Beltrão Júnior, J.A.; Nascimento, A.K.S. Desempenho do sistema de assessoramento ao irrigante—S@I para a gestão da água em áreas irrigadas: Benefícios aos irrigantes e ao distrito. Rev. Bras. Agric. Irrig. 2015, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Levantamento Sistemático da Produção Agrícola; Sistema SIDRA: Rio de Janeiro, Brazil, 2018; p. 77. Available online: www.ibge.gov.br (accessed on 15 March 2021).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- ADECE—Agência de Desenvolvimento do Estado do Ceará. Coeficientes Técnicos de Mensuração do Uso de Mão de Obra Nas Culturas Irrigadas do Ceará—2017; ADECE—Agência de Desenvolvimento do Estado do Ceará: Fortaleza, Brazil, 2017; p. 130. [Google Scholar]
- Paiva, P.V.V. Análise Econômico-Social dos Principais Sistemas de Produção no Perímetro Irrigado Morada Nova, Ceará. Master’s Thesis, Universidade Federal do Ceará, Fortaleza, Brazil, 2019; 113p. Available online: http://www.repositorio.ufc.br/bitstream/riufc/52112/3/2019_dis_pvvpaiva.pdf (accessed on 20 February 2021).
- Perry, C.; Steduto, P.; Karajeh, F. Does improved irrigation technology save water? A review of the evidence. In Discussion Paper on Irrigation and Sustainable Water Resources Management in the Near East and North Africa; FAO: Cairo, Egypt, 2017; p. 42. [Google Scholar]
- Javanovic, N.; Pereira, L.S.; Paredes, P.; Pôças, I.; Cantore, V.; Todorovic, M. A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods. Agric. Water Manag. 2020, 239, 106267. [Google Scholar] [CrossRef]
- Costa, R.N.T.; Colares, D.S.; Saunders, L.C.U.; Suoza, F. Análise das eficiências de aplicação e de uso da água em cultivo de arroz no perímetro irrigado morada nova, CE. Irriga 2005, 10, 388–398. [Google Scholar] [CrossRef]
- Coelho, E.F.; Simões, W.L.; Santos, F.P.; Melo, D.M.; Lima, L.W.F. Produtividade e eficiência do uso de água da bananeira caipira sob diferentes densidades de plantio e lâminas de irrigação. Enciclopédia Biosf. 2015, 11, 2430–2437. [Google Scholar] [CrossRef]
- Singh, K.B.; Gajri, P.R.; Arora, V.K. Modelling the effects of soil and water management practices on the water balance and performance of rice. Agric. Water Manag. 2001, 49, 77–95. [Google Scholar] [CrossRef]
- Sartori, G.M.S.; Marchesan, E.; Azevedo, C.F.; Streck, N.A.; Roso, R.; Coelho, L.L.; Oliveira, M.L. Rendimento de grãos e eficiência no uso de água de arroz irrigado em função da época de semeadura. Ciência Rural 2013, 43, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Vories, E.D.; Counce, P.A.; Keisling, T.C. Comparison of flooded and furrow-irrigated rice on clay. Irrig. Sci. 2002, 21, 139–144. [Google Scholar]
- Silva, C.H. Produtividade Agrícola da Cana-de-Açúcar em Diferentes Sistemas de Cultivo e Idade do Canavial. Master’s Thesis, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil, 2019; 65p. Available online: http://www.repositorio.ufal.br/jspui/handle/riufal/7187 (accessed on 10 March 2021).
- Teodoro, I.; Dantas Neto, J.; Souza, J.L.; Lyra, G.B.; Brito, K.S.; Sá, L.A.; Santos, M.A.L.; Sarmento, P.L.V.S. Isoquantas de produtividade da cana-de-açúcar em função de níveis de irrigação e adubação nitrogenada. Irriga 2013, 18, 387–401. [Google Scholar] [CrossRef]
- Oliveira, E.C.A.; Freire, F.J.; Oliveira, A.C.; Simões Neto, D.E.; Rocha, A.T.; Carvalho, L.A. Produtividade, eficiência de uso da água e qualidade tecnológica de cana-de-açúcar submetida a diferentes regimes hídricos. Pesq. Agropec. Bras. 2011, 46, 617–625. [Google Scholar] [CrossRef]
- Gava, G.J.C.; Silva, M.A.S.; Silva, R.C.; Jeronimo, E.M.; Cruz, J.C.S.; Kölln, O.T. Produtividade de três cultivares de cana-de-açúcar sob manejos de sequeiro e irrigado por gotejamento. Rev. Bras. Eng. Agríc. Amb. 2011, 15, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Dalri, A.B.; Cruz, R.L.; Garcia, C.J.B.; Duenhas, L.H. Irrigação por gotejamento subsuperficial na produção e qualidade de cana-de-açúcar. Irriga 2008, 13, 1–11. [Google Scholar] [CrossRef]
- Macêdo, A.B.M.; Costa, R.N.T.; Danielle, F.A.; Nunes, K.G. Water productivity with localized irrigation using groundwater and reuse water in the cultivation of plant species. Rev. Bras. Eng. Agríc. Amb. 2020, 24, 219–224. [Google Scholar] [CrossRef]
- Costa, F.S.; Suassuna, A.S.M.; Brito, M.E.B.; Mesquita, E.F. Crescimento, produtividade e eficiência no uso da água em bananeira irrigada no semiárido paraibano. Caatinga 2012, 25, 26–33. [Google Scholar]
- Deus, J.A.; Neves, J.C.L.; Lima Neto, A.J.; Natale, W.; Alvarez, V.V.H.; Albuquerque, F.M.R. Partitioning of macronutrients and nutritional efficiency in fertigated prata banana. Rev. Bras. Frutic. 2020, 42, 1–3. [Google Scholar] [CrossRef]
- Locatelli, V.E.R.; Medeiros, R.D.; Smiderle, O.J.; Albuquerque, J.A.A.; Araújo, W.F.; Souza, K.T.S. Componentes de produção, produtividade e eficiência da irrigação do feijão-caupi no cerrado de Roraima. Rev. Bras. Eng. Agríc. Amb. 2014, 18, 574–580. [Google Scholar] [CrossRef]
- Silva, S.; Silva, C.S.; Souza, J.E.; Sousa, A.C.P.; Araújo, E.R. Uso econômico da água para o feijão caupi na região do sertão alagoano. Rev. Bras. Agrotec. 2019, 9, 7–13. [Google Scholar] [CrossRef]
- Souza, P.O.P.; Ramos, T.F.; Fiel, L.C.S.; Farias, V.D.S.; Sousa, D.P.; Nunes, H.G.G.C. Yield and water use efficiency of cowpea under water deficit. Rev. Bras. Eng. Agríc. Amb. 2019, 23, 119–125. [Google Scholar] [CrossRef]
- Ali, M.H.; Talukder, M.S.U. Increasing water productivity in crop production—A synthesis. Agric. Water Manag. 2008, 95, 1201–1213. [Google Scholar] [CrossRef]
- Silva, V.B.; Rabelo, J.S.; Costa, R.N.T.; Silva, A.O.; Almeida, A.V.R. Response of the cherry tomato to watering and ground cover under organic cultivation. Aust. J. Crop Sci. 2019, 13, 214–220. [Google Scholar] [CrossRef]
- Wallace, J.S.; Batchelor, C.H. Managing water resources for crop production. Philos. Trans. R. Soc. Lond. B 1997, 352, 937–947. [Google Scholar] [CrossRef]
- Burton, M.A.; Kivumbi, D.; El-Askari, K. Opportunities and constraints to improving irrigation water management: Foci for research. Agric. Water Manag. 1999, 40, 37–44. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 2016, 11, 025002. [Google Scholar] [CrossRef]
- Pfeiffer, L.; Lin, C.-Y.C. Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. J. Environ. Econ. Manag. 2014, 67, 189–208. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, G.C.; Pereira, L.S. Assessing economic impacts of deficit irrigation as related to water productivity and water costs. Biosyst. Eng. 2009, 103, 536–551. [Google Scholar] [CrossRef] [Green Version]
Crops | Irrigated Areas (ha) * | Total | (m3 ha−1) | Predominant Irrigation System | ||
---|---|---|---|---|---|---|
LJ | MJ | UJ | ||||
Avocado | 15 | --- | 4 | 19 | 19,000 | Drip |
Barbados cherry | 333 | 20 | --- | 353 | 18,000 | Micro-sprinkler |
Rice | 1455 | 265 | 340 | 2060 | 28,000 | Flooding *** |
Custard apple | 5 | 5 | 10,570 | Drip | ||
Banana | 4359 | 336 | 599 | 5294 | 18,000 | Micro-sprinkler |
Sweet potato | 34 | 25 | --- | 59 | 10,490 | Sprinkler **** |
Cashew | 46 | --- | --- | 46 | 7000 | Drip |
Sugar cane | 880 | --- | 2 | 882 | 19,000 | Center pivot |
Green coconut | 1115 | 56 | 66 | 1237 | 15,000 | Micro-sprinkler |
Cowpea* | 1651 | 427 | 255 | 2333 | 7500 | Sprinkler **** |
Guava | 801 | 60 | 54 | 915 | 15,000 | Drip |
Soursop | 31 | --- | --- | 31 | 23,000 | Micro-sprinkler |
Orange | 169 | 3 | 6 | 178 | 16,500 | Drip |
Lemon | 314 | 72 | 1 | 387 | 14,000 | Drip |
Cassava | 168 | 34 | 58 | 260 | 7200 | Sprinkler **** |
Papaya | 865 | --- | 14 | 879 | 15,000 | Drip |
Mango | 382 | 2 | --- | 384 | 14,000 | Micro-sprinkler |
Passion fruit | 104 | --- | 35 | 139 | 14,000 | Drip |
Watermelon | 2574 | --- | 4 | 2578 | 12,000 | Drip |
Melon | 3929 | --- | --- | 3929 | 11,000 | Drip |
Green corn | 683 | 49 | 126 | 858 | 12.000 | Sprinkler *** |
Cactus pear | 16 | --- | --- | 16 | 5500 | Drip |
Tomato | 34 | 4 | 48 | 86 | 10,000 | Drip |
Grape | 11 | --- | --- | 11 | 17,600 | Drip |
Total | 19,974 | 1353 | 1612 | 22,939 | 339,360 |
Crops | |||||||
---|---|---|---|---|---|---|---|
LJ | MJ | UJ | PLP Max * | LJ | MJ | UJ | |
(kg ha−1) | (kg ha−1) | (kg ha−1) | (kg ha−1) | (m3 ha−1) | (m3 ha−1) | (m3 ha−1) | |
Avocado | 10,200 | --- | 3750 | 11,000 | 9840 | --- | 8310 |
Barbados cherry | 24,300 | 7000 | --- | 24,300 | 11,760 | 14,280 | --- |
Rice | 13,400 | 5774 | 4220 | 13,400 | 13,200 | 15,720 | 10,920 |
Custard apple | 4400 | --- | --- | 4400 | 10,041 | --- | --- |
Banana | 23,807 | 31,917 | 26,668 | 31,917 | 14,240 | 17,440 | 12,220 |
Sweet potato | 10,485 | 25,000 | --- | 25,400 | 5220 | 12,864 | --- |
Cashew | 4098 | --- | --- | 4098 | 7040 | --- | --- |
Sugar cane | 61,393 | --- | 55,834 | 61,393 | 7250 | --- | 6210 |
Green coconut | 20,706 | 21,600 | 35,000 | 35,000 | 10,000 | 12,300 | 8790 |
Cowpea | 1500 | 1200 | 1288 | 1920 | 8330 | 10,190 | 7060 |
Guava | 15,625 | 25,300 | 22,412 | 33,000 | 8840 | 10,700 | 7740 |
Soursop | 7086 | --- | --- | 7086 | 9840 | --- | --- |
Orange | 13,100 | 2000 | 8000 | 13,100 | 11,75 | 14,280 | 9850 |
Lemon | 11,200 | 7200 | 4000 | 11,200 | 11,860 | 14,280 | 9768 |
Cassava | 23,000 | 21,400 | 30,000 | 31,000 | 9470 | 11,420 | 7900 |
Papaya | 78,000 | --- | 59,556 | 78,000 | 10,320 | --- | 8610 |
Mango | 13,100 | 11,500 | --- | 20,475 | 11,250 | 14,280 | --- |
Passion fruit | 25,780 | --- | 25,000 | 25,780 | 11,590 | --- | 10,596 |
Watermelon | 65,800 | --- | 48,455 | 65,800 | 6880 | --- | 5800 |
Melon | 68,750 | --- | --- | 68,750 | 7350 | --- | --- |
Green corn | 9407 | 6151 | 9531 | 9531 | 8100 | 9650 | 6540 |
Cactus pear | 216,180 | --- | --- | 250,000 | 11,295 | --- | --- |
Tomato | 84,530 | 35,000 | 64,000 | 84,530 | 5890 | 7140 | 4920 |
Grape | 10,545 | --- | --- | 34,625 | 9840 | --- | --- |
Total(ha) (×1000) M ** | 761,412.3 | 17,976.8 | 29,351.9 | 198,601.4 | 18,562.1 | 43,841.8 |
Crops | ELP (BRL ha−1) | LLAB (jobs ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
ELP * | LLAB * | |||||||
LJ | MJ | UJ | Max | LJ | MJ | UJ | Max | |
Avocado | 10,404 | --- | 9375 | 19,017 | 0.98 | --- | 0.75 | 0.98 |
Barbados cherry | 11,047 | 9800 | --- | 45,460 | 1.90 | 1.62 | --- | 1.90 |
Rice | 5065 | 5165 | 5584 | 5584 | 0.54 | 0.68 | 0.65 | 0.75 |
Custard apple | 33,440 | --- | --- | 33,440 | 0.58 | --- | --- | 0.58 |
Banana | 21,627 | 20,698 | 51,132 | 51,132 | 0.41 | 0.58 | 0.57 | 0.58 |
Sweet potato | 12,494 | 17,600 | --- | 21,856 | 1.10 | 1.24 | --- | 1.38 |
Cashew | 10,772 | --- | --- | 10,772 | 0.16 | --- | --- | 0.16 |
Sugar cane | 3350 | --- | 11,115 | 11,115 | 0.14 | --- | 0.18 | 0.18 |
Green coconut | 7820 | 7859 | 8113 | 11,043 | 0.18 | 0.18 | 0.32 | 0.32 |
Cowpea | 2079 | 1928 | 1822.5 | 2705 | 1.24 | 0.98 | 1.15 | 1.24 |
Guava | 18,909 | 35,410 | 31,670 | 35,410 | 0.92 | 0.71 | 0.30 | 0.92 |
Soursop | 16,544 | --- | --- | 16,544 | 0.65 | --- | --- | 0.65 |
Orange | 7128 | 3867 | 11,667 | 15,047 | 0.49 | 0.36 | 0.29 | 0.49 |
Lemon | 6792 | 2208 | 4000 | 20,578 | 0.30 | 0.42 | 0.61 | 0.61 |
Cassava | 16,293 | 23,961 | 33,978 | 33,978 | 0.86 | 0.42 | 0.60 | 0.86 |
Papaya | 42,002 | --- | 29,929 | 42,002 | 0.53 | --- | 0.50 | 0.62 |
Mango | 15,445 | 8050 | --- | 23,251 | 0.40 | 0.52 | --- | 0.52 |
Passion fruit | 75,700 | --- | 20,546 | 75,700 | 0.41 | --- | 0.41 | 0.41 |
Watermelon | 3917 | --- | 20,700 | 20,700 | 0.66 | --- | 0.80 | 0.80 |
Melon | 22,253 | --- | --- | 22,253 | 0.72 | --- | --- | 0.72 |
Green corn | 7757 | 6711 | 18,752 | 18,752 | 1.12 | 0.80 | 0.78 | 1.20 |
Cactus pear | 42,727 | --- | --- | 42,727 | 0.80 | --- | --- | 0.80 |
Tomato | 69,168 | 35,000 | 51,079 | 69,168 | 3.26 | 3.10 | 3.15 | 3.26 |
Grape | 26,785 | --- | --- | 86,333 | 2.31 | --- | --- | 2.31 |
Total (BRL) (×1000) ** | 299,493.4 | 13,817.2 | 43,377.1 | 12,768 | 1008 | 1208 |
Crops | Crops | ||||||
---|---|---|---|---|---|---|---|
LJ * | MJ | UJ | LJ | MJ | UJ | ||
Avocado | 1.93 | --- | 2.29 | Orange | 1.40 | 1.16 | 1.73 |
Barbados cherry | 1.53 | 1.26 | --- | Lemon | 1.18 | 0.98 | 1.43 |
Rice | 2.12 | 1.78 | 2.56 | Cassava | 0.76 | 0.62 | 0.91 |
Custard apple | 1.05 | --- | --- | Papaya | 1.45 | --- | 0.57 |
Banana | 1.26 | 1.03 | 1.47 | Mango | 1.24 | 0.98 | --- |
Sweet potato | 2.01 | 0.82 | --- | Passion fruit | 1.21 | --- | 1.32 |
Cashew | 1.00 | --- | --- | Watermelon | 1.75 | --- | 2.07 |
Sugar cane | 2.62 | --- | 3.06 | Melon | 1.50 | --- | --- |
Green coconut | 1.50 | 1.22 | 1.71 | Green corn | 1.48 | 1.24 | 1.84 |
Cowpea | 0.90 | 0.74 | 1.06 | Cactus pear | 0.49 | --- | --- |
Guava | 1.70 | 1.40 | 1.94 | Tomato | 1.70 | 1.40 | 2.03 |
Soursop | 2.34 | --- | --- | Grape | 1.79 | --- | --- |
Crops | LJ * | MJ | UJ | PWP | EWP | |||
---|---|---|---|---|---|---|---|---|
PWP | EWP | PWP | EWP | PWP | EWP | Max | Max | |
(kg m−3) | (BRL m−3) | (kg m−3) | (BRL m−3) | (kg m−3) | (BRL m−3) | (kg m−3) | (BRL m−3) | |
Avocado | 0.537 | 0.55 | --- | --- | 0.197 | 0.49 | 0.579 | 1.00 |
Barbados cherry | 1.350 | 0.61 | 0.389 | 0.54 | --- | --- | 1.350 | 2.53 |
Rice | 0.479 | 0.18 | 0.206 | 0.14 | 0.151 | 0.20 | 0.479 | 0.20 |
Custard apple | 0.416 | 3.16 | --- | --- | --- | --- | 0.416 | 3.16 |
Banana | 1.323 | 1.20 | 1.773 | 1.15 | 1.482 | 2.84 | 1.773 | 2.84 |
Sweet potato | 0.997 | 1.19 | 2.383 | 1.68 | --- | --- | 2.421 | 2.08 |
Cashew | 0.585 | 1.54 | --- | --- | --- | --- | 0.585 | 1.54 |
Sugar cane | 3.231 | 0.18 | --- | --- | 2.939 | 0.58 | 3.231 | 0.58 |
Green coconut | 1.330 | 0.52 | 1.440 | 0.52 | 2.333 | 0.54 | 2.333 | 0.74 |
Cowpea | 0.200 | 0.28 | 0.161 | 0.26 | 0.172 | 0.24 | 0.256 | 0.36 |
Guava | 1.042 | 1.26 | 1.688 | 2.36 | 1.494 | 2.11 | 2.200 | 2.36 |
Soursop | 0.308 | 0.72 | --- | --- | --- | --- | 0.308 | 0.72 |
Orange | 0.794 | 0.43 | 0.121 | 0.23 | 0.484 | 0.71 | 0.794 | 0.91 |
Lemon | 0.800 | 0.48 | 0.477 | 0.16 | 0.286 | 0.29 | 0.800 | 1.47 |
Cassava | 3.194 | 2.26 | 2.972 | 3.33 | 4.168 | 4.72 | 4.306 | 4.72 |
Papaya | 5.200 | 2.80 | --- | --- | 3.970 | 1.99 | 5.200 | 2.80 |
Mango | 0.936 | 1.10 | 0.821 | 0.58 | --- | --- | 1.463 | 1.66 |
Passion fruit | 1.841 | 5.41 | --- | --- | 1.786 | 1.47 | 1.841 | 5.41 |
Watermelon | 5.483 | 0.33 | --- | --- | 4.083 | 1.72 | 5.483 | 1.72 |
Melon | 6.250 | 2.02 | --- | --- | --- | --- | 6.250 | 2.02 |
Green corn | 0.784 | 0.65 | 0.513 | 0.56 | 0.794 | 1.56 | 0.794 | 1.56 |
Cactus pear | 39.306 | 7.77 | --- | --- | --- | --- | 39.306 | 7.77 |
Tomato | 8.453 | 6.92 | 3.500 | 3.50 | 6.400 | 5.11 | 8.453 | 6.92 |
Grape | 0.599 | 1.52 | --- | --- | --- | --- | 1.967 | 4.90 |
Mean | 2.584 | 1.03 | 0.881 | 0.70 | 1.070 | 1.58 |
(PI) Scenario A | (PI) Scenario B | |||||
---|---|---|---|---|---|---|
Crops | LJ * | MJ | UJ | LJ | MJ | UJ |
Avocado | 0.195 | --- | 0.195 | 0.224 | --- | 0.225 |
Barbados cherry | 0.275 | 0.266 | --- | 0.309 | 0.302 | --- |
Rice | 0.127 | 0.176 | 0.143 | 0.139 | 0.187 | 0.162 |
Custard apple | 0.244 | --- | --- | 0.326 | --- | --- |
Banana | 0.199 | 0.515 | 0.424 | 0.235 | 0.474 | 0.523 |
Sweet potato | 0.195 | 0.543 | --- | 0.221 | 0.504 | --- |
Cashew | 0.160 | --- | --- | 0.188 | --- | --- |
Sugar cane | 0.164 | --- | 0.387 | 0.136 | --- | 0.289 |
Green coconut | 0.156 | 0.357 | 0.332 | 0.162 | 0.293 | 0.271 |
Cowpea | 0.198 | 0.195 | 0.214 | 0.191 | 0.189 | 0.212 |
Guava | 0.227 | 0.563 | 0.342 | 0.267 | 0.619 | 0.390 |
Soursop | 0.176 | --- | --- | 0.215 | --- | --- |
Orange | 0.165 | 0.162 | 0.197 | 0.177 | 0.175 | 0.218 |
Lemon | 0.152 | 0.214 | 0.182 | 0.162 | 0.194 | 0.190 |
Cassava | 0.263 | 0.582 | 0.530 | 0.284 | 0.594 | 0.569 |
Papaya | 0.328 | --- | 0.545 | 0.376 | --- | 0.492 |
Mango | 0.182 | 0.293 | --- | 0.211 | 0.281 | --- |
Passion fruit | 0.308 | --- | 0.334 | 0.465 | --- | 0.340 |
Watermelon | 0.202 | --- | 0.470 | 0.171 | --- | 0.409 |
Melon | 0.263 | --- | --- | 0.273 | --- | --- |
Green corn | 0.173 | 0.219 | 0.238 | 0.191 | 0.226 | 0.282 |
Cactus pear | 0.746 | --- | --- | 0.682 | --- | --- |
Tomato | 0.652 | 0.950 | 0.950 | 0.771 | 0.950 | 0.950 |
Grape | 0.319 | --- | --- | 0.398 | --- | --- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frizzone, J.A.; Lima, S.C.R.V.; Lacerda, C.F.; Mateos, L. Socio-Economic Indexes for Water Use in Irrigation in a Representative Basin of the Tropical Semiarid Region. Water 2021, 13, 2643. https://doi.org/10.3390/w13192643
Frizzone JA, Lima SCRV, Lacerda CF, Mateos L. Socio-Economic Indexes for Water Use in Irrigation in a Representative Basin of the Tropical Semiarid Region. Water. 2021; 13(19):2643. https://doi.org/10.3390/w13192643
Chicago/Turabian StyleFrizzone, José Antonio, Sílvio Carlos Ribeiro Vieira Lima, Claudivan Feitosa Lacerda, and Luciano Mateos. 2021. "Socio-Economic Indexes for Water Use in Irrigation in a Representative Basin of the Tropical Semiarid Region" Water 13, no. 19: 2643. https://doi.org/10.3390/w13192643
APA StyleFrizzone, J. A., Lima, S. C. R. V., Lacerda, C. F., & Mateos, L. (2021). Socio-Economic Indexes for Water Use in Irrigation in a Representative Basin of the Tropical Semiarid Region. Water, 13(19), 2643. https://doi.org/10.3390/w13192643