Exploratory and Exploitative Innovation Performance in the Artificial Intelligence Industry in China from the Perspective of a Collaboration Network: A Data-Driven Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Exploratory and Exploitative Innovation Performance
2.2. Collaboration Network and Exploratory and Exploitative Innovation Performance
2.3. Theoretical Model
3. Research Design
3.1. Research Framework
3.2. Research Methodology
4. Selection and Measurement of Variables
5. Data and Division of Firms
5.1. Data Acquisition and Processing
5.2. Selection of the Collaboration Network Structural Characteristics
5.3. Clustering Analysis of Firms
6. Analysis of Decision Rules
6.1. Decision Rules for ERIP
- (1)
- Decision rules for ERIP in Cluster I.
- (2)
- Decision rules for ERIP in Cluster II.
- (3)
- Decision rules for ERIP in Cluster III.
6.2. Decision Rules for EIIP
- (1)
- Decision rules for EIIP in Cluster I.
- (2)
- Decision rules for EIIP in Cluster II.
- (3)
- Decision rules for EIIP in Cluster III.
7. Conclusions and Discussion
7.1. Conclusions
7.2. Theoretical Contributions
7.3. Managerial Implications
7.4. Limitations and Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, M.; Bonn, M.A.; Han, S.J. Innovation ambidexterity: Balancing exploitation and exploration for startup and established restaurants and impacts upon performance. Ind. Innov. 2020, 27, 340–362. [Google Scholar] [CrossRef]
- Moreira, S.; Tae, C.J. The effect of industry leaders’ exploratory innovation on competitor performance. Ind. Innov. 2019, 26, 965–987. [Google Scholar] [CrossRef]
- Wernerfelt, B. A Resource View of the Firm. Strat. Manag. J. 1984, 5, 171–180. [Google Scholar] [CrossRef]
- Barney, J.B. Strategic factor markets: Expectations, luck, and business strategy. Manag. Sci. 1986, 32, 1231–1241. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, R.; Li, Q.; Wang, Y. How does a closed social network facilitate the impact of blockchain on corporate digital innovation performance? J. Bus. Res. 2025, 191, 115269. [Google Scholar] [CrossRef]
- Yang, B.; Li, X.; Kou, K. Research on the influence of network embeddedness on innovation performance: Evidence from China’s listed firms. J. Innov. Knowl. 2022, 7, 100210. [Google Scholar]
- Yuan, Q.; Chen, H.; Liu, C. Formation Drivers and Evolutionary Dynamics of Industry-University-Research Collaborative Networks in China’s Clean Energy Industry. Systems 2025, 13, 173. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, Z. Policies and exploitative and exploratory innovations of the wind power industry in China: The role of technological path dependence. Technol. Forecast. Soc. Change 2022, 177, 121519. [Google Scholar] [CrossRef]
- Hu, R.; Diao, X. Exploring the Open Innovation Information Spillover Effect: Conceptual Framework Construction and Exploratory Analysis. IEEE Access 2021, 9, 93734–93744. [Google Scholar] [CrossRef]
- Sheng, M.L.; Hartmann, N.N. Impact of subsidiaries’ cross-border knowledge tacitness shared and social capital on MNCs’ explorative and exploitative innovation capability. J. Int. Manag. 2019, 25, 100705. [Google Scholar] [CrossRef]
- Ju, X.; Wang, G. How do network ties affect firm performance growth and its variability? The mediating roles of exploratory and exploitative knowledge utilization. J. Bus. Res. 2023, 160, 113781. [Google Scholar]
- Liu, W.; Wen, K.; Does, U.S. Entity List impel Chinese AI enterprises to exploratory innovation? An external knowledge acquisition perspective. J. Strat. Innov. 2025, 36, 200536. [Google Scholar] [CrossRef]
- Tang, F.; Qian, Z.; Cheng, L.; Baig, J.; Cui, F. Platform collaboration patterns, network structure, and innovation performance: An NK simulation approach. Expert Syst. Appl. 2024, 242, 122684. [Google Scholar] [CrossRef]
- Zhou, W.; Li, H. A study on the multidimensional driving mechanism of cross-regional scientific collaboration network in China. Technol. Anal. Strateg. Manag. 2023, 36, 3667–3681. [Google Scholar] [CrossRef]
- Cai, Y. Towards a new model of EU-China innovation cooperation: Bridging missing links between international university collaboration and international industry collaboration. Technovation 2023, 119, 102553. [Google Scholar] [CrossRef]
- Sinaga, K.P.; Yang, M.S. Unsupervised k-means clustering algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, H.; Li, J.; Pan, Q.; Lai, L.; Nie, Y.; Zhang, Z. Social Network Forensics Analysis Model Based on Network Representation Learning. Entropy 2024, 26, 579. [Google Scholar] [CrossRef]
- March, J.G. Exploration and exploitation in organizational learning. Organ. Sci. 1991, 2, 71–87. [Google Scholar] [CrossRef]
- Roth, L.; Corsi, S.; Hughes, M. Ambidexterity within a multinational context: How organisations can leverage explorative and exploitative reverse innovation. RD Manag. 2024, 54, 628–643. [Google Scholar] [CrossRef]
- AL-khatib, A.W. Drivers of generative artificial intelligence to fostering exploitative and exploratory innovation: A TOE framework. Technol. Soc. 2023, 75, 102403. [Google Scholar] [CrossRef]
- Xu, K.; Shao, Y.; Hu, Y. Antifragility or threat-rigidity: The impact of board environmental policy uncertainty perception on corporate exploratory and exploitative green technological innovation. Technol. Forecast. Soc. Change 2025, 216, 124145. [Google Scholar] [CrossRef]
- Ouyang, H.; Park, C.; Hoon, O.C. The impact of reverse knowledge transfers on exploitative and exploratory innovations in MNCs: The role of knowledge distance. J. Bus. Res. 2024, 179, 114682. [Google Scholar] [CrossRef]
- Enkel, E.; Heil, S.; Hengstler, M.; Wirth, H. Exploratory and exploitative innovation: To what extent do the dimensions of individual level absorptive capacity contribute? Technovation 2017, 60–61, 29–38. [Google Scholar] [CrossRef]
- Liu, J.; Long, F.; Chen, L.; Li, L.; Zheng, L.; Mi, Z. Exploratory or exploitative green innovation? The role of different green fiscal policies in motivating innovation. Technovation 2025, 143, 103207. [Google Scholar] [CrossRef]
- Bachmann, J.; Ohlies, I.; Flatten, T. Effects of entrepreneurial marketing on new ventures’ exploitative and exploratory innovation: The moderating role of competitive intensity and firm size. Ind. Mark. Manag. 2021, 92, 87–100. [Google Scholar] [CrossRef]
- Shukla, M.D.; Mital, A.; Qureshi, I. Effects of alliance portfolio breadth and depth on exploratory and exploitative innovation: Evidence from Indian high-tech sectors. J. Bus. Res. 2024, 179, 114686. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.; Li, X. Impact of policies on electric vehicle diffusion: An evolutionary game of small world network analysis. J. Clean. Prod. 2020, 265, 121703. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.; Ma, J.; Lu, A.; Xu, X. Policy-induced cooperative knowledge network, university-industry collaboration and firm innovation: Evidence from the Greater Bay Area. Technol. Forecast. Soc. Change 2024, 200, 123143. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, L. The mechanism of TMT network characteristics on enterprises’ open innovation: A theoretical framework and meta-analysis. Int. Rev. Econ. 2024, 90, 89–101. [Google Scholar] [CrossRef]
- Ponta, L.; Puliga, G.; Manzini, R.; Cincotti, S. Sustainability-oriented innovation and co-patenting role in agri-food sector: Empirical analysis with patents. Technol. Forecast. Soc. Change 2022, 178, 121595. [Google Scholar] [CrossRef]
- Min, S.; Kim, J.; Sawng, Y. The effect of innovation network size and public R&D investment on regional innovation efficiency. Technol. Forecast. Soc. Change 2020, 155, 119998. [Google Scholar]
- Sime, S.; Hagedoorn, J.; Tan, H. Innovation performance and licensing: The effect of the compositional quality of direct and indirect network ties. Technovation 2023, 127, 102826. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J. Impact of innovation network on regional innovation performance: Do network density, network openness and network strength have any influence? J. Sci. Technol. Policy Manag. 2023, 14, 982–999. [Google Scholar] [CrossRef]
- Zaefarian, G.; Misra, S.; Koval, M.; Iurkov, V. Editorial: Social network analysis in marketing: A step-by-step guide for researchers. Ind. Mark. Manag. 2022, 107, A11–A24. [Google Scholar] [CrossRef]
- Muller, E.; Peres, R. The effect of social networks structure on innovation performance: A review and directions for research. Int. J. Res. Mark. 2019, 36, 3–19. [Google Scholar] [CrossRef]
- Di, K.; Xu, R.; Liu, Z.; Liu, R. How do enterprises’ green collaborative innovation network locations affect their green total factor productivity? Empirical analysis based on social network analysis. J. Clean. Prod. 2024, 438, 140766. [Google Scholar] [CrossRef]
- Kang, N.; Xu, G.; Mu, X.; Yang, H.; Qiao, Y. How virtual clusters affect innovation performance: Evidence from global hydropower industry. J. Clean. Prod. 2022, 352, 131554. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, T.; Wang, T. Network centrality, support organizations, exploratory innovation: Empirical analysis of China’s integrated circuit industry. Heliyon 2023, 9, e17709. [Google Scholar] [CrossRef]
- Guan, J.; Liu, N. Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Res. Policy 2016, 45, 97–112. [Google Scholar] [CrossRef]
- Reagans, R.; Zuckerman, E.W. Networks, Diversity, and Productivity: The Social Capital of Corporate R&D Teams. Organ. Sci. 2001, 12, 502–517. [Google Scholar]
- Xie, C.; Yang, N.; Wang, Y.; Zhang, M. Firm’s openness and innovation radicalness within R&D networks: Reconciling the openness paradox through the network pluralism view. Technovation 2025, 141, 103163. [Google Scholar]
- Wal, A. Cluster emergence and network evolution A longitudinal analysis of the inventor network in Sophia-Antipolis. Reg. Stud. 2013, 47, 651–668. [Google Scholar]
- Xiao, Y.; Xiang, R.; Sun, Y.; Chen, J.; Hao, Y. Digital disruption, knowledge and collaborative networks and green innovation in China manufacturing transformation. Technol. Forecast. Soc. Change 2025, 216, 124120. [Google Scholar] [CrossRef]
- Pan, M.; Chen, Q.; Xiao, W. Antecedents of radical innovation speed from a knowledge network perspective. Int. J. Prod. Econ. 2024, 271, 109219. [Google Scholar] [CrossRef]
- Wen, J.; Qualls, W.J.; Zeng, D. To explore or exploit: The influence of inter-firm R&D network diversity and structural holes on innovation outcomes. Technovation 2021, 100, 102178. [Google Scholar]
- Zhang, L.; Qiu, H.; Chen, J.; Zhou, W.; Li, H. How Do Heterogeneous Networks Affect a Firm’s Innovation Performance? A Research Analysis Based on Clustering and Classification. Entropy 2023, 25, 1560. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984; pp. 1–358. [Google Scholar]
- Tang, J.; Huang, Y.; Liu, D.; Xiong, L.; Bu, R. Research on Traffic Accident Severity Level Prediction Model Based on Improved Machine Learning. Systems 2025, 13, 31. [Google Scholar] [CrossRef]
- Grant, D.; Yeo, B. A global perspective on tech investment, financing, and ICT on manufacturing and service industry performance. Int. J. Inf. Manag. 2018, 43, 130–145. [Google Scholar] [CrossRef]
- Zhou, W.; Li, H. R&D team network configurations, knowledge diversity and breakthrough innovation: A combined effect framework. Eur. J. Innov. Manag. 2024, 12, 423. [Google Scholar] [CrossRef]
- Li, H.; Tian, H.; Zhou, W.; Wu, Y.J. The impact of artificial intelligence adoption degree on corporate digital technology innovation. Enterp. Inf. Syst. 2025. [Google Scholar] [CrossRef]
- Quinlan, J.R. Introduction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Fleming, L.; King, C.; Juda, A.I. Small worlds and regional innovation. Organ. Sci. 2007, 18, 938–954. [Google Scholar] [CrossRef]
- Tortoriello, M.; Krackhardt, D. Activating cross-boundary knowledge: The role of simmelian ties in the generation of innovations. Acad. Manag. J. 2010, 53, 167–181. [Google Scholar] [CrossRef]
- Guan, J.; Zhang, J.; Yan, Y. The impact of multilevel networks on innovation. Res. Policy 2015, 44, 545–559. [Google Scholar] [CrossRef]
- Gilsing, V.; Nooteboom, B.; Vanhaverbeke, W.; Duysters, G.; van den Oord, A. Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density. Res. Policy 2008, 37, 1717–1731. [Google Scholar] [CrossRef]
- Igna, I.; Venturini, F. The determinants of AI innovation across European firms. Res. Policy 2023, 52, 104661. [Google Scholar] [CrossRef]
- Zhang, Q.; Pu, S.; Luo, L.; Liu, Z.; Xu, J. Revisiting important ports in container shipping networks: A structural hole-based approach. Transp. Policy 2022, 126, 239–248. [Google Scholar] [CrossRef]
- Chen, H.; Gao, X.; Wu, Q.; Huang, R. Cloud Model-Based Adaptive Time-Series Information Granulation Algorithm and Its Similarity Measurement. Entropy 2025, 27, 180. [Google Scholar] [CrossRef]
- Zhang, L.; Qiu, H.; Chen, J.; Li, H.; Wan, X. How to Enhance Enterprises’ Radical Innovation Performance Through Multiple Pathways—A Machine Learning Analysis of SRDI Enterprises in China. Systems 2025, 13, 198. [Google Scholar] [CrossRef]
Cluster | Number | DC | CC | LCC | SH | Proportion of ERIP (%) | Proportion of EIIP (%) | ||
---|---|---|---|---|---|---|---|---|---|
I | 103 | 5.466 | 25.621 | 0.020 | 1.012 | H | 38.8 | H | 38.8 |
L | 61.2 | L | 61.2 | ||||||
II | 78 | 26.128 | 244.285 | 0.139 | 1.489 | H | 62.8 | H | 43.6 |
L | 37.2 | L | 56.4 | ||||||
III | 100 | 24.160 | 36.523 | 0.012 | 1.342 | H | 54.0 | H | 71.0 |
L | 46.0 | L | 29.0 |
Cluster | DC | CC | LCC | SH | Decision Results | Support Degree (%) | Confidence Degree (%) |
---|---|---|---|---|---|---|---|
I | >0.491 | - | - | >0.330 | low | 15.5 | 81.3 |
(0.307, 0.491] | - | - | >0.330 | high | 21.4 | 54.5 | |
≤0.307 | - | - | >0.330 | low | 54.4 | 66.1 | |
- | - | - | ≤0.330 | high | 8.7 | 66.7 |
Cluster | DC | CC | LCC | SH | Decision Results | Support Degree (%) | Confidence Degree (%) |
---|---|---|---|---|---|---|---|
II | - | - | - | >0.888 | high | 44.9 | 80 |
>0.456 | - | - | ≤0.888 | high | 30.7 | 62.5 | |
≤0.456 | - | - | ≤0.888 | low | 24.4 | 68.4 |
Cluster | DC | CC | LCC | SH | Decision Results | Support Degree (%) | Confidence Degree (%) |
---|---|---|---|---|---|---|---|
III | >1.000 | - | - | - | high | 31 | 77.4 |
≤1.000 | - | - | >0.988 | high | 10 | 90 | |
≤1.000 | - | - | ≤0.988 | low | 59 | 64.4 |
Cluster | DC | CC | LCC | SH | Decision Results | Support Degree (%) | Confidence Degree (%) |
---|---|---|---|---|---|---|---|
I | - | - | >0.957 | - | low | 13.6 | 92.9 |
- | - | ≤0.957 | >0.470 | high | 4.9 | 100 | |
- | - | ≤0.957 | ≤0.470 | low | 81.6 | 59.5 |
Cluster | DC | CC | LCC | SH | Decision Results | Support Degree (%) | Confidence Degree (%) |
---|---|---|---|---|---|---|---|
II | - | - | - | >0.928 | high | 30.7 | 87.5 |
- | >0.762 | - | ≤0.928 | high | 11.5 | 55.6 | |
- | ≤0.762 | - | ≤0.928 | low | 57.7 | 82.2 |
Cluster | DC | CC | LCC | SH | Decision Results | Support Degree (%) | Confidence Degree (%) |
---|---|---|---|---|---|---|---|
III | >0.995 | - | - | - | high | 41 | 97.6 |
≤0.995 | - | - | >0.952 | high | 14 | 85.7 | |
≤0.995 | - | - | (0.712, 0.952] | low | 22 | 81.8 | |
≤0.995 | - | - | ≤0.712 | high | 23 | 65.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Li, H.; Zhou, W.; Qiu, H.; Wu, Y.J. Exploratory and Exploitative Innovation Performance in the Artificial Intelligence Industry in China from the Perspective of a Collaboration Network: A Data-Driven Analysis. Entropy 2025, 27, 577. https://doi.org/10.3390/e27060577
Zhang L, Li H, Zhou W, Qiu H, Wu YJ. Exploratory and Exploitative Innovation Performance in the Artificial Intelligence Industry in China from the Perspective of a Collaboration Network: A Data-Driven Analysis. Entropy. 2025; 27(6):577. https://doi.org/10.3390/e27060577
Chicago/Turabian StyleZhang, Liping, Hailin Li, Wenhao Zhou, Hanhui Qiu, and Yenchun Jim Wu. 2025. "Exploratory and Exploitative Innovation Performance in the Artificial Intelligence Industry in China from the Perspective of a Collaboration Network: A Data-Driven Analysis" Entropy 27, no. 6: 577. https://doi.org/10.3390/e27060577
APA StyleZhang, L., Li, H., Zhou, W., Qiu, H., & Wu, Y. J. (2025). Exploratory and Exploitative Innovation Performance in the Artificial Intelligence Industry in China from the Perspective of a Collaboration Network: A Data-Driven Analysis. Entropy, 27(6), 577. https://doi.org/10.3390/e27060577