The Effect of Trap Design on the Scalability of Trapped-Ion Quantum Technologies
Abstract
:1. Introduction
2. Field Characterization
2.1. Calculation of Trapping Potential
2.2. Ion Height
2.3. Harmonicity
2.4. Trap Depth
2.5. Trap Frequency
3. Expected Experimental Performance
3.1. Heating Rate
3.2. Achieving a Target Trap Frequency
4. Practicality
4.1. Fabrication
4.2. Optical Access
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical atomic clocks. Rev. Mod. Phys. 2015, 87, 637–701. [Google Scholar] [CrossRef]
- Gilmore, K.A.; Affolter, M.; Lewis-Swan, R.J.; Barberena, D.; Jordan, E.; Rey, A.M.; Bollinger, J.J. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals. Science 2021, 373, 673–678. [Google Scholar] [CrossRef]
- Blatt, R.; Roos, C.F. Quantum simulations with trapped ions. Nat. Phys. 2012, 8, 277–284. [Google Scholar] [CrossRef]
- Wineland, D.J.; Barrett, M.; Britton, J.; Chiaverini, J.; DeMarco, B.; Itano, W.M.; Jelenković, B.; Langer, C.; Leibfried, D.; Meyer, V.; et al. Quantum information processing with trapped ions. Philos. Trans. R. Soc. London. Ser. Math. Phys. Eng. Sci. 2003, 361, 1349–1361. [Google Scholar] [CrossRef] [PubMed]
- Schindler, P.; Nigg, D.; Monz, T.; Barreiro, J.T.; Martinez, E.; Wang, S.X.; Quint, S.; Brandl, M.F.; Nebendahl, V.; Roos, C.F.; et al. A quantum information processor with trapped ions. New J. Phys. 2013, 15, 123012. [Google Scholar] [CrossRef]
- An, F.A.; Ransford, A.; Schaffer, A.; Sletten, L.R.; Gaebler, J.; Hostetter, J.; Vittorini, G. High Fidelity State Preparation and Measurement of Ion Hyperfine Qubits with I 1/2. Phys. Rev. Lett. 2022, 129, 130501. [Google Scholar] [CrossRef]
- Ballance, C.J.; Harty, T.P.; Linke, N.M.; Sepiol, M.A.; Lucas, D.M. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. Phys. Rev. Lett. 2016, 117, 060504. [Google Scholar] [CrossRef]
- Clark, C.R.; Tinkey, H.N.; Sawyer, B.C.; Meier, A.M.; Burkhardt, K.A.; Seck, C.M.; Shappert, C.M.; Guise, N.D.; Volin, C.E.; Fallek, S.D.; et al. High-Fidelity Bell-State Preparation with 40Ca+ Optical Qubits. Phys. Rev. Lett. 2021, 127, 130505. [Google Scholar] [CrossRef]
- Sawyer, B.C.; Brown, K.R. Wavelength-insensitive, multispecies entangling gate for group-2 atomic ions. Phys. Rev. A 2021, 103, 022427. [Google Scholar] [CrossRef]
- Ospelkaus, C.; Warring, U.; Colombe, Y.; Brown, K.R.; Amini, J.M.; Leibfried, D.; Wineland, D.J. Microwave quantum logic gates for trapped ions. Nature 2011, 476, 181–184. [Google Scholar] [CrossRef]
- Weber, M.A.; Gely, M.F.; Hanley, R.K.; Harty, T.P.; Leu, A.D.; Löschnauer, C.M.; Nadlinger, D.P.; Lucas, D.M. Robust and fast microwave-driven quantum logic for trapped-ion qubits. Phys. Rev. A 2024, 110, L010601. [Google Scholar] [CrossRef]
- Löschnauer, C.M.; Toba, J.M.; Hughes, A.C.; King, S.A.; Weber, M.A.; Srinivas, R.; Matt, R.; Nourshargh, R.; Allcock, D.T.C.; Ballance, C.J.; et al. Scalable, high-fidelity all-electronic control of trapped-ion qubits. arXiv 2024, arXiv:2407.07694. [Google Scholar] [CrossRef]
- Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 1990, 62, 531–540. [Google Scholar] [CrossRef]
- Chiaverini, J.; Blakestad, R.B.; Britton, J.; Jost, J.D.; Langer, C.; Leibfried, D.; Ozeri, R.; Wineland, D.J. Surface-electrode architecture for ion-trap quantum information processing. Quantum Inf. Comput. 2005, 5, 419–439. [Google Scholar] [CrossRef]
- Zhang, J.; Pagano, G.; Hess, P.W.; Kyprianidis, A.; Becker, P.; Kaplan, H.; Gorshkov, A.V.; Gong, Z.X.; Monroe, C. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 2017, 551, 601–604. [Google Scholar] [CrossRef]
- Pino, J.M.; Dreiling, J.M.; Figgatt, C.; Gaebler, J.P.; Moses, S.A.; Allman, M.S.; Baldwin, C.H.; Foss-Feig, M.; Hayes, D.; Mayer, K.; et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 2021, 592, 209–213. [Google Scholar] [CrossRef]
- Pogorelov, I.; Feldker, T.; Marciniak, C.D.; Postler, L.; Jacob, G.; Krieglsteiner, O.; Podlesnic, V.; Meth, M.; Negnevitsky, V.; Stadler, M.; et al. Compact Ion-Trap Quantum Computing Demonstrator. PRX Quantum 2021, 2, 020343. [Google Scholar] [CrossRef]
- Moses, S.; Baldwin, C.; Allman, M.; Ancona, R.; Ascarrunz, L.; Barnes, C.; Bartolotta, J.; Bjork, B.; Blanchard, P.; Bohn, M.; et al. A Race-Track Trapped-Ion Quantum Processor. Phys. Rev. X 2023, 13, 041052. [Google Scholar] [CrossRef]
- Chen, J.S.; Nielsen, E.; Ebert, M.; Inlek, V.; Wright, K.; Chaplin, V.; Maksymov, A.; Páez, E.; Poudel, A.; Maunz, P.; et al. Benchmarking a trapped-ion quantum computer with 30 qubits. Quantum 2024, 8, 1516. [Google Scholar] [CrossRef]
- Postler, L.; Butt, F.; Pogorelov, I.; Marciniak, C.D.; Heußen, S.; Blatt, R.; Schindler, P.; Rispler, M.; Müller, M.; Monz, T. Demonstration of Fault-Tolerant Steane Quantum Error Correction. PRX Quantum 2024, 5, 030326. [Google Scholar] [CrossRef]
- Reichardt, B.W.; Aasen, D.; Chao, R.; Chernoguzov, A.; van Dam, W.; Gaebler, J.P.; Gresh, D.; Lucchetti, D.; Mills, M.; Moses, S.A.; et al. Demonstration of quantum computation and error correction with a tesseract code. arXiv 2024, arXiv:2409.04628. [Google Scholar] [CrossRef]
- Zhang, C.; Pokorny, F.; Li, W.; Higgins, G.; Pöschl, A.; Lesanovsky, I.; Hennrich, M. Submicrosecond entangling gate between trapped ions via Rydberg interaction. Nature 2020, 580, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Shalaev, M.; O’Reilly, J.; Goetting, I.; Toh, G.; Kalakuntla, A.; Yu, Y.; Monroe, C. High-fidelity remote entanglement of trapped atoms mediated by time-bin photons. Nat. Commun. 2025, 16, 2533. [Google Scholar] [CrossRef]
- Saner, S.; Băzăvan, O.; Minder, M.; Drmota, P.; Webb, D.J.; Araneda, G.; Srinivas, R.; Lucas, D.M.; Ballance, C.J. Breaking the Entangling Gate Speed Limit for Trapped-Ion Qubits Using a Phase-Stable Standing Wave. Phys. Rev. Lett. 2023, 131, 220601. [Google Scholar] [CrossRef]
- Schäfer, V.M.; Ballance, C.J.; Thirumalai, K.; Stephenson, L.J.; Ballance, T.G.; Steane, A.M.; Lucas, D.M. Fast quantum logic gates with trapped-ion qubits. Nature 2018, 555, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Steane, A.; Roos, C.F.; Stevens, D.; Mundt, A.; Leibfried, D.; Schmidt-Kaler, F.; Blatt, R. Speed of ion-trap quantum-information processors. Phys. Rev. A 2000, 62, 042305. [Google Scholar] [CrossRef]
- Brownnutt, M.; Kumph, M.; Rabl, P.; Blatt, R. Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 2015, 87, 1419–1482. [Google Scholar] [CrossRef]
- Ghosh, P.K. Ion Traps; A Clarendon Press Publication: Oxford, UK, 1995. [Google Scholar]
- Kajita, M. Ion Traps; IOP Publishing: Bristol, UK, 2022; pp. 2053–2563. [Google Scholar] [CrossRef]
- Pearson, C.E.; Leibrandt, D.R.; Bakr, W.S.; Mallard, W.J.; Brown, K.R.; Chuang, I.L. Experimental investigation of planar ion traps. Phys. Rev. A 2006, 73, 032307. [Google Scholar] [CrossRef]
- Allcock, D.T.C.; Sherman, J.A.; Stacey, D.N.; Burrell, A.H.; Curtis, M.J.; Imreh, G.; Linke, N.M.; Szwer, D.J.; Webster, S.C.; Steane, A.M.; et al. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect. New J. Phys. 2010, 12, 053026. [Google Scholar] [CrossRef]
- Hong, S.; Lee, M.; Cheon, H.; Kim, T.; Cho, D.-i. Guidelines for Designing Surface Ion Traps Using the Boundary Element Method. Sensors 2016, 16, 616. [Google Scholar] [CrossRef]
- Doret, S.C.; Amini, J.M.; Wright, K.; Volin, C.; Killian, T.; Ozakin, A.; Denison, D.; Hayden, H.; Pai, C.S.; Slusher, R.E.; et al. Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation. New J. Phys. 2012, 14, 073012. [Google Scholar] [CrossRef]
- Moehring, D.L.; Highstrete, C.; Stick, D.; Fortier, K.M.; Haltli, R.; Tigges, C.; Blain, M.G. Design, fabrication and experimental demonstration of junction surface ion traps. New J. Phys. 2011, 13, 075018. [Google Scholar] [CrossRef]
- Wright, K.; Amini, J.M.; Faircloth, D.L.; Volin, C.; Doret, S.C.; Hayden, H.; Pai, C.S.; Landgren, D.W.; Denison, D.; Killian, T.; et al. Reliable transport through a microfabricated X-junction surface-electrode ion trap. New J. Phys. 2013, 15, 033004. [Google Scholar] [CrossRef]
- Mehta, K.K.; Bruzewicz, C.D.; McConnell, R.; Ram, R.J.; Sage, J.M.; Chiaverini, J. Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 2016, 11, 1066–1070. [Google Scholar] [CrossRef]
- Maunz, P.L.W. High Optical Access Trap 2.0.; Technical Report; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2016. [Google Scholar] [CrossRef]
- Gerasin, I.; Zhadnov, N.; Kudeyarov, K.; Khabarova, K.; Kolachevsky, N.; Semerikov, I. Optimized Surface Ion Trap Design for Tight Confinement and Separation of Ion Chains. Quantum Rep. 2024, 6, 442–451. [Google Scholar] [CrossRef]
- Marquet, C.; Schmidt-Kaler, F.; James, D. Phonon-phonon interactions due to non-linear effects in a linear ion trap. Appl. Phys. B Lasers Opt. 2003, 76, 199–208. [Google Scholar] [CrossRef]
- Home, J.P.; Hanneke, D.; Jost, J.D.; Leibfried, D.; Wineland, D.J. Normal modes of trapped ions in the presence of anharmonic trap potentials. New J. Phys. 2011, 13, 073026. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.T.; Duan, L.M. Noise analysis for high-fidelity quantum entangling gates in an anharmonic linear Paul trap. Phys. Rev. A 2018, 97, 062325. [Google Scholar] [CrossRef]
- Alheit, R.; Chu, X.Z.; Hoefer, M.; Holzki, M.; Werth, G.; Blümel, R. Nonlinear collective oscillations of an ion cloud in a Paul trap. Phys. Rev. A 1997, 56, 4023–4031. [Google Scholar] [CrossRef]
- Razvi, M.A.N.; Chu, X.Z.; Alheit, R.; Werth, G.; Blümel, R. Fractional frequency collective parametric resonances of an ion cloud in a Paul trap. Phys. Rev. A 1998, 58, R34–R37. [Google Scholar] [CrossRef]
- Drakoudis, A.; Söllner, M.; Werth, G. Instabilities of ion motion in a linear Paul trap. Int. J. Mass Spectrom. 2006, 252, 61–68. [Google Scholar] [CrossRef]
- Littich, G. Electrostatic Control and Transport of Ions on a Planar Trap for Quantum Information Processing. Master’s Thesis, ETH Zurich, Zürich, Switzerland, 2011. [Google Scholar]
- Sage, J.M.; Kerman, A.J.; Chiaverini, J. Loading of a surface-electrode ion trap from a remote, precooled source. Phys. Rev. A 2012, 86, 013417. [Google Scholar] [CrossRef]
- Dehmelt, H. Radiofrequency Spectroscopy of Stored Ions I: Storage. In Advances in Atomic and Molecular Physics; Academic Press: Cambridge, MA, USA, 1968; Volume 3, pp. 53–72. [Google Scholar]
- Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 2003, 75, 281–324. [Google Scholar] [CrossRef]
- Xu, S.; Xia, X.; Yu, Q.; Khan, S.; Megidish, E.; You, B.; Hemmerling, B.; Jayich, A.; Biener, J.; Häffner, H. 3D-Printed Micro Ion Trap Technology for Scalable Quantum Information Processing. arXiv 2023, arXiv:2310.00595. [Google Scholar] [CrossRef]
- Sterling, R.C.; Hughes, M.D.; Mellor, C.J.; Hensinger, W.K. Increased surface flashover voltage in microfabricated devices. Appl. Phys. Lett. 2013, 103, 143504. [Google Scholar] [CrossRef]
- Ray, K.G.; Rubenstein, B.M.; Gu, W.; Lordi, V. van der Waals-corrected density functional study of electric field noise heating in ion traps caused by electrode surface adsorbates. New J. Phys. 2019, 21, 053043. [Google Scholar] [CrossRef]
- Hite, D.A.; McKay, K.S.; Pappas, D.P. Surface science motivated by heating of trapped ions from the quantum ground state. New J. Phys. 2021, 23, 103028. [Google Scholar] [CrossRef]
- Cirac, J.I.; Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 2000, 404, 579–581. [Google Scholar] [CrossRef]
- Sharma, L.; Roy, A.; Panja, S.; Ojha, V.N.; De, S. Estimation of the ion-trap assisted electrical loads and resulting BBR shift. Sci. Rep. 2018, 8, 16884. [Google Scholar] [CrossRef]
- Sterk, J.D.; Blain, M.G.; Delaney, M.; Haltli, R.; Heller, E.; Holterhoff, A.L.; Jennings, T.; Jimenez, N.; Kozhanov, A.; Meinelt, Z. Multi-Junction Surface Ion Trap for Quantum Computing. 2024. Available online: https://arxiv.org/abs/2403.00208v1 (accessed on 19 May 2025).
- Meinelt, Z.K.; Bahr, M.; Finnegan, P.S.; Haltli, R.A.; Jordan, M.; Klitsner, B.H.; Liebsch, T.; Mounce, A.; Weatherred, S.E.; Stick, D.L. Microfabricated Ion Traps on Sapphire for Larger Trap Areas and Higher Qubit Count; Technical Report; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2024. [Google Scholar] [CrossRef]
- Amini, J.M.; Uys, H.; Wesenberg, J.H.; Seidelin, S.; Britton, J.; Bollinger, J.J.; Leibfried, D.; Ospelkaus, C.; VanDevender, A.P.; Wineland, D.J. Toward scalable ion traps for quantum information processing. New J. Phys. 2010, 12, 033031. [Google Scholar] [CrossRef]
- Burton, W.C.; Estey, B.; Hoffman, I.M.; Perry, A.R.; Volin, C.; Price, G. Transport of Multispecies Ion Crystals through a Junction in a Radio-Frequency Paul Trap. Phys. Rev. Lett. 2023, 130, 173202. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.; Vittorini, G.; Buikema, A.; Nichols, C.S.; Volin, C.; Stick, D.; Brown, K.R. Heating rates and ion-motion control in a Y-junction surface-electrode trap. Phys. Rev. A 2014, 89, 062308. [Google Scholar] [CrossRef]
- Lockhart, R.; Stanley, R.P.; Tormen, M. Design, fabrication and characterization of a micro-fabricated stacked-wafer segmented ion trap with two X-junctions. Quantum Sci. Technol. 2021, 6, 044001. [Google Scholar]
- Ragg, S.; Decaroli, C.; Lutz, T.; Home, J.P. Segmented ion-trap fabrication using high precision stacked wafers. Rev. Sci. Instruments 2019, 90, 103203. [Google Scholar] [CrossRef]
- Wilpers, G.; See, P.; Gill, P.; Sinclair, A.G. A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. Nat. Nanotechnol. 2012, 7, 572–576. [Google Scholar] [CrossRef]
- Park, S.; Notaros, M.; Mohanty, A.; Kim, D.; Notaros, J.; Mouradian, S. Technologies for modulation of visible light and their applications. Prog. Quantum Electron. 2024, 97, 100534. [Google Scholar] [CrossRef]
- Delaney, R.D.; Sletten, L.R.; Cich, M.J.; Estey, B.; Fabrikant, M.I.; Hayes, D.; Hoffman, I.M.; Hostetter, J.; Langer, C.; Moses, S.A.; et al. Scalable Multispecies Ion Transport in a Grid-Based Surface-Electrode Trap. Phys. Rev. X 2024, 14, 041028. [Google Scholar] [CrossRef]
- Mehta, K.K.; Zhang, C.; Malinowski, M.; Nguyen, T.L.; Stadler, M.; Home, J.P. Integrated optical multi-ion quantum logic. Nature 2020, 586, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Niffenegger, R.J.; Stuart, J.; Sorace-Agaskar, C.; Kharas, D.; Bramhavar, S.; Bruzewicz, C.D.; Loh, W.; Maxson, R.T.; McConnell, R.; Reens, D.; et al. Integrated multi-wavelength control of an ion qubit. Nature 2020, 586, 538–542. [Google Scholar] [CrossRef]
- Shirao, M.; Klawson, D.; Mouradian, S.; Wu, M.C. High efficiency focusing double-etched SiN grating coupler for trapped ion qubit manipulation. Jpn. J. Appl. Phys. 2022, 61, SK1002. [Google Scholar] [CrossRef]
- Hensinger, W.K.; Olmschenk, S.; Stick, D.; Hucul, D.; Yeo, M.; Acton, M.; Deslauriers, L.; Monroe, C.; Rabchuk, J. T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 2006, 88, 034101. [Google Scholar] [CrossRef]
- Blakestad, R.B.; Ospelkaus, C.; VanDevender, A.P.; Amini, J.M.; Britton, J.; Leibfried, D.; Wineland, D.J. High-Fidelity Transport of Trapped-Ion Qubits through an X-Junction Trap Array. Phys. Rev. Lett. 2009, 102, 153002. [Google Scholar] [CrossRef] [PubMed]
- Blakestad, R.B.; Ospelkaus, C.; VanDevender, A.P.; Wesenberg, J.H.; Biercuk, M.J.; Leibfried, D.; Wineland, D.J. Near-ground-state transport of trapped-ion qubits through a multidimensional array. Phys. Rev. A 2011, 84, 032314. [Google Scholar] [CrossRef]
Geometry | d [µm] | k | q | [kV] | (norm) | ||
---|---|---|---|---|---|---|---|
Surface | 90 | 0.210 | 0.250 | 10 | 15 | 110 | 1 |
gnd-surface | 46 | 0.280 | 0.333 | 10 | 4.0 | 85 | |
Cross-rf | 60 | 0.697 | 0.905 | 10 | 0.42 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, L.M.A.; Bowers, B.; Mouradian, S. The Effect of Trap Design on the Scalability of Trapped-Ion Quantum Technologies. Entropy 2025, 27, 576. https://doi.org/10.3390/e27060576
Nguyen LMA, Bowers B, Mouradian S. The Effect of Trap Design on the Scalability of Trapped-Ion Quantum Technologies. Entropy. 2025; 27(6):576. https://doi.org/10.3390/e27060576
Chicago/Turabian StyleNguyen, Le Minh Anh, Brant Bowers, and Sara Mouradian. 2025. "The Effect of Trap Design on the Scalability of Trapped-Ion Quantum Technologies" Entropy 27, no. 6: 576. https://doi.org/10.3390/e27060576
APA StyleNguyen, L. M. A., Bowers, B., & Mouradian, S. (2025). The Effect of Trap Design on the Scalability of Trapped-Ion Quantum Technologies. Entropy, 27(6), 576. https://doi.org/10.3390/e27060576