Alkali Halide Aqueous Solutions Under Pressure: A Non-Equilibrium Molecular Dynamics Investigation of Thermal Transport and Thermodiffusion
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NEMD | Non-equilibrium Molecular Dynamics |
PPPM | Particle-Particle Particle-Mesh |
NPT | Isothermal-isobaric |
RDF | Radial Distribution Function |
SDF | Spatial Distribution Function |
Symbols | |
A | Cross-sectional area of simulation box |
b | Solute molality |
Speed of sound | |
Isobaric heat capacity | |
Isochoric heat capacity | |
D | Inter-diffusion coefficient |
Thermal diffusion coefficient | |
g | Ratio of the local particle density in the radial distribution function |
H | Enthalpy |
Mass flux | |
Heat flux | |
Boltzmann constant | |
Isothermal compressibility | |
Simulation box length in x, y, z dimensions | |
Location of the main maximum in the radial distribution function | |
Soret coefficient | |
Temperature of the hot and cold thermostatting regions | |
V | Volume |
w | Weight fraction |
x | Molar fraction |
Isobaric thermal expansion coefficient | |
Thermal conductivity | |
Chemical potential gradient | |
Thermal gradient | |
Density | |
Entropy production | |
Heat rate |
Appendix A
NaCl Press (GPa) | ||||
10−4 | 5.55 | 0.32 | 5.94 | 0.37 |
0.1 | 5.64 | 0.32 | 5.98 | 0.36 |
0.5 | 5.84 | 0.31 | 6.05 | 0.35 |
1 | 5.95 | 0.31 | 6.20 | 0.35 |
1.5 | 6.03 | 0.31 | 23.03 | 0.52 |
2 | 6.06 | 0.30 | 19.87 | 0.49 |
LiCl Press (GPa) | ||||
10−4 | 4.00 | 0.27 | 5.81 | 0.36 |
0.1 | 4.00 | 0.26 | 5.99 | 0.37 |
0.5 | 4.00 | 0.25 | 6.15 | 0.36 |
1 | 4.00 | 0.26 | 6.55 | 0.35 |
1.5 | 4.00 | 0.24 | 22.66 | 0.51 |
2 | 4.00 | 0.24 | 18.38 | 0.47 |
1 M NaCl | ||||||
Press | Temp | |||||
0.10 | 290.1 | 1.08 | 0.889 | 0.001 | 3.60 × 10−4 | 3.52 × 10−4 |
0.50 | 290.2 | 1.19 | 1.069 | 0.002 | 5.57 × 10−3 | 2.20 × 10−4 |
1.00 | 290.1 | 1.28 | 1.235 | 0.005 | 5.35 × 10−3 | 2.44 × 10−4 |
1.50 | 290.2 | 1.34 | 1.363 | 0.004 | 5.67 × 10−3 | 4.60 × 10−4 |
1.99 | 290.4 | 1.39 | 1.466 | 0.003 | 6.13 × 10−3 | 4.32 × 10−4 |
1 M LiCl | ||||||
Press | Temp | |||||
0.10 | 290.2 | 1.06 | 0.884 | 0.002 | −2.55 × 10−4 | 3.80 × 10−4 |
0.50 | 290.1 | 1.17 | 1.066 | 0.002 | 9.82 × 10−4 | 3.10 × 10−4 |
1.01 | 290.1 | 1.26 | 1.239 | 0.005 | 1.35 × 10−3 | 3.54 × 10−4 |
1.50 | 290.0 | 1.33 | 1.371 | 0.006 | 1.35 × 10−3 | 4.96 × 10−4 |
1.99 | 290.2 | 1.37 | 1.472 | 0.003 | 1.78 × 10−3 | 2.55 × 10−4 |
2.60 | 999.9 | 1.17 | 1.357 | 0.002 | 3.24 × 10−3 | 2.60 × 10−4 |
Pure water | ||||||
Press | Temp | |||||
1.70 × 10−3 | 289.9 | 1.00 | 0.845 | 0.002 | ||
0.87 | 289.6 | 1.04 | 0.897 | 0.002 | ||
0.51 | 289.9 | 1.16 | 1.089 | 0.002 | ||
0.99 | 290.0 | 1.25 | 1.258 | 0.006 | ||
1.48 | 289.2 | 1.31 | 1.412 | 0.001 | ||
1.98 | 289.9 | 1.36 | 1.512 | 0.003 |
NaCl Press (GPa) | ||||
10−4 | 5.56 | 0.26 | 9.64 | 0.10 |
0.1 | 5.29 | 0.46 | 9.63 | 0.16 |
0.5 | 5.77 | 0.09 | 9.10 | 0.09 |
1 | 5.65 | 0.41 | 8.51 | 0.12 |
1.5 | 3.41 | 0.43 | 5.70 | 0.28 |
2 | 2.82 | 0.39 | 5.04 | 0.38 |
LiCl Press (GPa) | ||||
10−4 | 5.86 | 0.25 | 11.93 | 0.49 |
0.1 | 5.84 | 0.47 | 10.31 | 0.27 |
0.5 | 5.75 | 0.17 | 10.37 | 0.69 |
1 | 4.09 | 0.19 | 7.08 | 0.14 |
1.5 | 3.39 | 0.55 | 6.10 | 0.57 |
2 | 1.86 | 0.51 | 5.19 | 0.28 |
References
- Meade, C.; Jeanloz, R. Deep-Focus Earthquakes and Recycling of Water into the Earth’s Mantle. Science 1991, 252, 68–72. [Google Scholar] [CrossRef]
- Bina, C.R.; Navrotsky, A. Possible presence of high-pressure ice in cold subducting slabs. Nature 2000, 408, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Kargel, J.S.; Kaye, J.Z.; Head, J.W., III; Marion, G.M.; Sassen, R.; Crowley, J.K.; Ballesteros, O.P.; Grant, S.A.; Hogenboom, D.L. Europa’s Crust and Ocean: Origin, Composition, and the Prospects for Life. Icarus 2000, 148, 226–265. [Google Scholar] [CrossRef]
- Byrne, R.H.; Laurie, S.H. Influence of pressure on chemical equilibria in aqueous systems—With particular reference to seawater (Technical Report). Pure Appl. Chem. 1999, 71, 871–890. [Google Scholar] [CrossRef]
- Barciszewski, J.; Jurczak, J.; Porowski, S.; Specht, T.; Erdmann, V.A. The role of water structure in conformational changes of nucleic acids in ambient and high-pressure conditions. Eur. J. Biochem. 1999, 260, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Katayama, Y.; Hattori, T.; Saitoh, H.; Ikeda, T.; Aoki, K.; Fukui, H.; Funakoshi, K. Structure of liquid water under high pressure up to 17 GPa. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 81, 014109. [Google Scholar] [CrossRef]
- Strässle, T.; Saitta, A.M.; Le Godec, Y.; Hamel, G.; Klotz, S.; Loveday, J.S.; Nelmes, R.J. Structure of Dense Liquid Water by Neutron Scattering to 6.5 GPa and 670 K. Phys. Rev. Lett. 2006, 96, 067801. [Google Scholar] [CrossRef] [PubMed]
- Starr, F.W.; Sciortino, F.; Stanley, H.E. Dynamics of simulated water under pressure. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1999, 60, 6757. [Google Scholar] [CrossRef]
- Bresme, F.; Römer, F. Heat transport in liquid water at extreme pressures: A non equilibrium molecular dynamics study. J. Mol. Liq. 2013, 185, 1–7. [Google Scholar] [CrossRef]
- Römer, F.; Wang, Z.; Wiegand, S.; Bresme, F. Alkali halide solutions under thermal gradients: Soret coefficients and heat transfer mechanisms. J. Phys. Chem. B 2013, 117, 8209–8222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Puligheddu, M.; Zhang, L.; Car, R.; Galli, G. Thermal Conductivity of Water at Extreme Conditions. J. Phys. Chem. B 2023, 127, 7011–7017. [Google Scholar] [CrossRef]
- Ludwig, C. Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösung. Sitzungsber. Bayer. Akad. Wiss. Math. Naturwiss. Kl. 1856, 20, 539. [Google Scholar]
- Soret, C. Sur l’ état d’ équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homogéne dont deux parties sont portèes á des tempèratures diffèrentes. Arch. Sci. Phys. Nat. 1879, 2, 48–61. [Google Scholar]
- de Groot, S.; Mazur, P. Non-Equilibrium Thermodynamics; Dover Publications: New York, NY, USA, 1984. [Google Scholar]
- Wiegand, S. Thermal diffusion in liquid mixtures and polymer solutions. J. Condens. Matter Phys. 2004, 16, R357. [Google Scholar] [CrossRef]
- Niether, D.; Wiegand, S. Thermophoresis of biological and biocompatible compounds in aqueous solution. J. Condens. Matter Phys. 2019, 31, 503003. [Google Scholar] [CrossRef]
- Wienken, C.J.; Baaske, P.; Rothbauer, U.; Braun, D.; Duhr, S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 2010, 1, 100. [Google Scholar] [CrossRef] [PubMed]
- Mast, C.B.; Braun, D. Thermal trap for DNA replication. Phys. Rev. Lett. 2010, 104, 188102. [Google Scholar] [CrossRef] [PubMed]
- Wittko, G.; Köhler, W. On the temperature dependence of thermal diffusion of liquid mixtures. EPL 2007, 78, 46007. [Google Scholar] [CrossRef]
- Lecce, S.D.; Albrecht, T.; Bresme, F. The role of ion-water interactions in determining the Soret coefficient of LiCl aqueous solutions. Phys. Chem. Chem. Phys. 2017, 19, 9575–9583. [Google Scholar] [CrossRef]
- Bresme, F.; Vasey, E. Thermal transport of alkali halide aqueous solutions: A non-equilibrium molecular dynamics investigation. Mol. Phys. 2024, 122, e2388302. [Google Scholar] [CrossRef]
- Hutchinson, A.J.; Torres, J.F.; Corry, B. Modeling thermodiffusion in aqueous sodium chloride solutions—Which water model is best? J. Chem. Phys. 2022, 156, 164503. [Google Scholar] [CrossRef] [PubMed]
- Colombani, J.; Bert, J.; Dupuy-Philon, J. Thermal diffusion in (LiCl, RH2O). J. Chem. Phys. 1999, 110, 8622–8627. [Google Scholar] [CrossRef]
- Lecce, S.D.; Albrecht, T.; Bresme, F. A computational approach to calculate the heat of transport of aqueous solutions. Sci. Rep. 2017, 7, srep44833. [Google Scholar] [CrossRef] [PubMed]
- Lecce, S.D.; Bresme, F. Soret coefficients and thermal conductivities of alkali halide aqueous solutions via non-equilibrium molecular dynamics simulations. Mol. Simul. 2019, 45, 351–357. [Google Scholar] [CrossRef]
- Mohanakumar, S.; Kriegs, H.; Briels, W.J.; Wiegand, S. Overlapping hydration shells in salt solutions causing non-monotonic Soret coefficients with varying concentration. Phys. Chem. Chem. Phys. 2022, 24, 27380–27387. [Google Scholar] [CrossRef]
- Sakuma, H.; Ichiki, M. Density and isothermal compressibility of supercritical H2O-NaCl fluid: Molecular dynamics study from 673 to 2000 K, 0.2 to 2 GPa, and 0 to 22 wt % NaCl concentrations. Geofluids 2016, 16, 89–102. [Google Scholar] [CrossRef]
- Sakuma, H.; Ichiki, M. Electrical conductivity of NaCl-H2O fluid in the crust. J. Geophys. Res. Solid Earth 2016, 121, 577–594. [Google Scholar] [CrossRef]
- Rozsa, V.; Galli, G. Solvation of simple ions in water at extreme conditions. J. Chem. Phys. 2021, 154, 144501. [Google Scholar] [CrossRef]
- Pan, D.; Spanu, L.; Harrison, B.; Sverjensky, D.A.; Galli, G. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proc. Natl. Acad. Sci. USA 2013, 110, 6646–6650. [Google Scholar] [CrossRef] [PubMed]
- Sherman, D.M.; Collings, M.D. Ion association in concentrated NaCl brines from ambient to supercritical conditions: Results from classical molecular dynamics simulations. Geochem. Trans. 2002, 3, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Brodholt, J.P. Molecular dynamics simulations of aqueous NaCl solutions at high pressures and temperatures. Chem. Geol. 1998, 151, 11–19. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Fukuyama, N.; Yoshida, K.; Katayama, Y. Ion Solvation and Water Structure in an Aqueous Sodium Chloride Solution in the Gigapascal Pressure Range. J. Phys. Chem. Lett. 2021, 12, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Bove, L.E.; Pietrucci, F.; Saitta, A.M.; Klotz, S.; Teixeira, J. On the link between polyamorphism and liquid-liquid transition: The case of salty water. J. Chem. Phys. 2019, 151, 044503. [Google Scholar] [CrossRef] [PubMed]
- Mishima, O. Melting of the Precipitated Ice IV in LiCl Aqueous Solution and Polyamorphism of Water. J. Phys. Chem. B 2011, 115, 14064–14067. [Google Scholar] [CrossRef]
- Galvez, M.E.; Manning, C.E.; Connolly, J.A.; Rumble, D. The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 2015, 430, 486–498. [Google Scholar] [CrossRef]
- Manning, C.E. Fluids of the Lower Crust: Deep Is Different. Annu. Rev. Earth Planet. Sci. 2018, 46, 67–97. [Google Scholar] [CrossRef]
- Lee, N.; Mohanakumar, S.; Briels, W.J.; Wiegand, S. Non-monotonic Soret coefficients of aqueous LiCl solutions with varying concentrations. Phys. Chem. Chem. Phys. 2024, 26, 7830–7836. [Google Scholar] [CrossRef] [PubMed]
- Abascal, J.L.F.; Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005, 123, 234505. [Google Scholar] [CrossRef] [PubMed]
- Zeron, I.M.; Abascal, J.L.F.; Vega, C. A Force Field of Li+, Na+, K+, Mg2+, Ca2+, Cl-, and SO42- in Aqueous Solution Based on the TIP4P/2005 Water Model and Scaled Charges for the Ions. J. Chem. Phys. 2019, 151, 134504. [Google Scholar] [CrossRef]
- Vega, C.; Abascal, J.L.F. Simulating water with rigid non-polarizable models: A general perspective. Phys. Chem. Chem. Phys. 2011, 13, 19663–19688. [Google Scholar] [CrossRef] [PubMed]
- Vega, C.; Abascal, J.L.; Conde, M.; Aragones, J. What ice can teach us about water interactions: A critical comparison of the performance of different water models. Faraday Discuss. 2009, 141, 251–276. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Bresme, F. Thermal Transport and Thermal Polarization of Water in the Supercooled Regime. J. Phys. Chem. Lett. 2024, 15, 9774–9779. [Google Scholar] [CrossRef] [PubMed]
- Bresme, F.; Lervik, A.; Armstrong, J. Non-equilibrium Molecular Dynamics. In Experimental Thermodynamics Volume X: Non-Equilibrium Thermodynamics with Applications; The Royal Society of Chemistry: London, UK, 2015. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Schneider, T.; Stoll, E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 1978, 17, 1302–1322. [Google Scholar] [CrossRef]
- Dünweg, B.; Paul, W. Brownian dynamics simulations without Gaussian random numbers. Int. J. Mod. Phys. C 1991, 2, 817–827. [Google Scholar] [CrossRef]
- Isele-Holder, R.E.; Mitchell, W.; Hammond, J.R.; Kohlmeyer, A.; Ismail, A.E. Reconsidering Dispersion Potentials: Reduced Cutoffs in Mesh-Based Ewald Solvers Can Be Faster Than Truncation. J. Chem. Theory Comput. 2013, 9, 5412–5420. [Google Scholar] [CrossRef] [PubMed]
- Kjelstrup, S.; Bedeaux, D. Non-Equilibrium Thermodynamics of Heterogeneous Systems; WORLD SCIENTIFIC: Singapore, 2008. [Google Scholar] [CrossRef]
- Bekker, H.; Berendsen, H.; Dijkstra, E.; Achterop, S.; Drunen, R.; van der Spoel, D.; Sijbers, A.; Keegstra, H.; Reitsma, B.; Renardus, M. Gromacs: A parallel computer for molecular dynamics simulations. Phys. Comput. 1993, 92, 252–256. [Google Scholar]
- Brehm, M.; Thomas, M.; Gehrke, S.; Kirchner, B. TRAVIS—A free analyzer for trajectories from molecular simulation. J. Chem. Phys. 2020, 152, 164105. [Google Scholar] [CrossRef] [PubMed]
- Brehm, M.; Kirchner, B. TRAVIS—A Free Analyzer and Visualizer for Monte Carlo and Molecular Dynamics Trajectories. Chem. Inf. Model. 2011, 51, 2007–2023. [Google Scholar] [CrossRef] [PubMed]
- Kusalik, P.G.; Svishchev, I.M. The spatial structure in liquid water. Science 1994, 265, 1219–1221. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; Spoel, D.V.D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University Press: London, UK, 1987. [Google Scholar]
- Ramires, M.L.; de Castro, C.A.; Fareleira, J.M.; Wakeham, W.A. Thermal Conductivity of Aqueous Sodium Chloride Solutions. J. Chem. Eng. Data 1994, 39, 186–190. [Google Scholar] [CrossRef]
- Zhang, J.; Clennell, M.B.; Dewhurst, D.N. Transport Properties of NaCl in Aqueous Solution and Hydrogen Solubility in Brine. J. Phys. Chem. B 2023, 127, 8900–8915. [Google Scholar] [CrossRef] [PubMed]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Filipponi, A.; De Panfilis, S.; Oliva, C.; Ricci, M.A.; D’Angelo, P.; Bowron, D.T. Ion Hydration under Pressure. Phys. Rev. Lett. 2003, 91, 165505. [Google Scholar] [CrossRef] [PubMed]
- Wagner, W.; Pruß, A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 2002, 31, 387–535. [Google Scholar] [CrossRef]
- Bridgman, P.W. The Thermal Conductivity of Liquids. Proc. Natl. Acad. Sci. USA 1923, 9, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.; Bresme, F. Polarisation of water under thermal fields: The effect of the molecular dipole and quadrupole moments. Phys. Chem. Chem. Phys. 2022, 24, 14924–14936. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Hao, Y.; Liang, T.; Ying, P.; Xu, J.; Wu, J.; Fan, Z. Accurate prediction of heat conductivity of water by a neuroevolution potential. J. Chem. Phys. 2023, 158, 204114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Bresme, F. Alkali Halide Aqueous Solutions Under Pressure: A Non-Equilibrium Molecular Dynamics Investigation of Thermal Transport and Thermodiffusion. Entropy 2025, 27, 193. https://doi.org/10.3390/e27020193
Zhao G, Bresme F. Alkali Halide Aqueous Solutions Under Pressure: A Non-Equilibrium Molecular Dynamics Investigation of Thermal Transport and Thermodiffusion. Entropy. 2025; 27(2):193. https://doi.org/10.3390/e27020193
Chicago/Turabian StyleZhao, Guansen, and Fernando Bresme. 2025. "Alkali Halide Aqueous Solutions Under Pressure: A Non-Equilibrium Molecular Dynamics Investigation of Thermal Transport and Thermodiffusion" Entropy 27, no. 2: 193. https://doi.org/10.3390/e27020193
APA StyleZhao, G., & Bresme, F. (2025). Alkali Halide Aqueous Solutions Under Pressure: A Non-Equilibrium Molecular Dynamics Investigation of Thermal Transport and Thermodiffusion. Entropy, 27(2), 193. https://doi.org/10.3390/e27020193