CasDacGCN: A Dynamic Attention-Calibrated Graph Convolutional Network for Information Popularity Prediction
Abstract
1. Introduction
- We propose CasDacGCN, a dynamic attention-calibrated graph convolutional network for information popularity prediction. Our model introduces the Bidirectional Cross-Attention Fusion (BCAF) module, which dynamically integrates snapshot-level local structural features with global temporal context, mitigating the decoupling of spatial and temporal signals, and thereby better capturing the evolution of information cascades.
- We propose a Hypernetwork Calibration Module to address the challenge of sparse and long-tail cascades. It employs a lightweight feedforward network to generate sample-specific scaling coefficients, and when combined with the GCN–GRU backbone, this adaptive calibration ensures robustness across diverse cascade densities, enabling the model to generalize better than existing spatiotemporal approaches.
- Experimental results on the Weibo and DBLP datasets validate the effectiveness of our approach, demonstrating that the CasDacGCN model outperforms existing baseline methods in information propagation prediction tasks. Ablation studies further confirm the critical roles of the Bidirectional Cross-Attention Fusion (BCAF) and Hypernetwork Calibration (HFCM) modules in improving model performance.
2. Related Work
2.1. Traditional Methods
2.2. Deep Learning-Based Prediction Methods
3. Preliminaries
4. The Model
4.1. Snapshot-Level Local Feature Extraction
4.2. Global Temporal Modeling
4.3. Bidirectional Cross-Attention Fusion
4.4. Hypernetwork Calibration Module
4.5. Prediction Layer
5. Experiment
5.1. Experimental Setup and Datasets
5.2. Parameter Settings and Baselines
- Feature-linear [38]: A linear regression model is used to fit the cascade growth, with the learning rate set to 0.01.
- Feature-deep [39]: A two-layer fully connected neural network is employed to capture complex features, with the number of hidden layers set to 3 and the learning rate set to 0.001.
- DeepCas [26]: The first end-to-end deep learning model for cascade prediction.
- DeepHawkes [27]: Converts the cascade graph into forwarding paths and integrates RNN with the self-exciting mechanism of Hawkes processes for cascade prediction.
- CasCN [17]: Divides the cascade graph into subgraphs, learns subgraph representations using GCN, and models the structural evolution with LSTM.
- AECasN [18]: Employs an autoencoder to learn deep representations and outputs the predicted cascade growth.
- CasSeqGCN [32]: Generates subgraph sequences from cascade snapshots and learns structural and temporal features for prediction.
- CasDO [40] integrates probabilistic diffusion models with temporal neural ODEs to model uncertainties and irregular dynamics in cascade evolution.
- Casformer [29] introduces an adaptive cascade sampling strategy and a graph-based Transformer that jointly capture structural and temporal features of cascade graphs.
5.3. Performance Comparison
5.4. Ablation Study
5.5. Parameter Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ta, T.A.N.; Li, K.; Yang, Y.; Jiao, F.; Tang, Z.; Li, G. Evaluating public anxiety for topic-based communities in social networks. IEEE Trans. Knowl. Data Eng. 2020, 34, 1191–1205. [Google Scholar] [CrossRef]
- Szabo, G.; Huberman, B.A. Predicting the popularity of online content. Commun. ACM 2010, 53, 80–88. [Google Scholar] [CrossRef]
- Centola, D. The spread of behavior in an online social network experiment. Science 2010, 329, 1194–1197. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A. The origin of bursts and heavy tails in human dynamics. Nature 2005, 435, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Seklouli, A.S.; Zhang, H.; Ren, L.; Yu, X.; Ouzrout, Y. Popularity Prediction of Micro-Blog Hot Topics Based on Time-Series Data. In Proceedings of the 2023 15th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), Kuala Lumpur, Malaysia, 8–10 December 2023; pp. 199–204. [Google Scholar]
- Bao, P.; Shen, H.W.; Jin, X.; Cheng, X.Q. Modeling and predicting popularity dynamics of microblogs using self-excited Hawkes processes. In Proceedings of the 24th International Conference on World Wide Web (WWW), Florence, Italy, 18–22 May 2015; pp. 9–10. [Google Scholar]
- Rizoiu, M.A.; Mishra, S.; Kong, Q.; Carman, M.; Xie, L. SIR-Hawkes: Linking epidemic models and Hawkes processes to model diffusions in finite populations. In Proceedings of the 2018 World Wide Web Conference (WWW), Lyon, France, 23–27 April 2018; pp. 419–428. [Google Scholar]
- Kong, Q.; Rizoiu, M.A.; Xie, L. Modeling information cascades with self-exciting processes via generalized epidemic models. In Proceedings of the 13th International Conference on Web Search and Data Mining (WSDM), Houston, TX, USA, 3–7 February 2020; pp. 286–294. [Google Scholar]
- Okawa, M.; Iwata, T.; Tanaka, Y.; Toda, H.; Kurashima, T.; Kashima, H. Dynamic Hawkes processes for discovering time-evolving communities’ states behind diffusion processes. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual, 14–18 August 2021; pp. 1276–1286. [Google Scholar]
- Cui, P.; Jin, S.; Yu, L.; Wang, F.; Zhu, W.; Yang, S. Cascading outbreak prediction in networks: A data-driven approach. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 901–909. [Google Scholar]
- Cai, Y.; Hu, W.; Liu, X.; Wang, H.; Zhang, X.; Wang, J. User Dual Intents Graph Modeling for Information Diffusion Prediction. In Proceedings of the 2024 IEEE 10th Conference on Big Data Security on Cloud (BigDataSecurity), New York, NY, USA, 10–12 May 2024; pp. 35–40. [Google Scholar]
- Jiao, P.; Song, W.; Wang, Y.; Zhang, W.; Chen, H.; Zhao, Z.; Wu, J. Cascade Popularity Prediction: A Multi-View Learning Approach with Socialized Modeling. IEEE Trans. Netw. Sci. Eng. 2025, 12, 1198–1209. [Google Scholar] [CrossRef]
- Jiao, P.; Yan, P.; Zhang, J.; Wang, B.; Zhang, W.; Zhao, N. Combine the Growth of Cascades and Impact of Users for Diffusion Prediction. IEEE Trans. Big Data 2025, 11, 887–895. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, F.; Zhang, K.; Liu, S.; Trajcevski, G. CasFlow: Exploring hierarchical structures and propagation uncertainty for cascade prediction. IEEE Trans. Knowl. Data Eng. 2023, 35, 3484–3499. [Google Scholar] [CrossRef]
- Ye, J.; Bao, Q.; Xu, M.; Xu, J.; Qiu, H.; Jiao, P. RD-GCN: A Role-Based Dynamic Graph Convolutional Network for Information Diffusion Prediction. IEEE Trans. Netw. Sci. Eng. 2024, 11, 4923–4937. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, G.; Liu, H.; Zhang, C.; Liu, J. CaSTGCN: Deep Learning Method for Information Cascade Prediction. In Proceedings of the 2024 China Automation Congress (CAC), Qingdao, China, 1–3 November 2024; pp. 2174–2179. [Google Scholar]
- Chen, X.; Zhao, Y.; Liu, G.; Sun, R.; Zhou, X.; Zheng, K. Efficient similarity-aware influence maximization in geo-social network. IEEE Trans. Knowl. Data Eng. 2020, 34, 4767–4780. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, Q.; Li, Y. AECasN: An information cascade predictor by learning the structural representation of the whole cascade network with autoencoder. Expert Syst. Appl. 2022, 191, 116260. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, X.; Zhang, Y.; Zhang, L.; Jiang, Y. HierCas: Hierarchical Temporal Graph Attention Networks for Popularity Prediction in Information Cascades. In Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN), Yokohama, Japan, 30 June–5 July 2024; pp. 1–8. [Google Scholar]
- Wang, R.; Xu, X.; Zhang, Y. Multiscale Information Diffusion Prediction With Minimal Substitution Neural Network. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Leskovec, J. Patterns of temporal variation in online media. In Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM), Hong Kong, China, 9–12 February 2011; pp. 177–186. [Google Scholar]
- Gao, S.; Ma, J.; Chen, Z. Popularity prediction in microblogging network. In Proceedings of the Asia-Pacific Web Conference, Changsha, China, 5–7 September 2014; pp. 379–390. [Google Scholar]
- Kong, S.; Mei, Q.; Feng, L.; Ye, F.; Zhao, Z. Predicting bursts and popularity of hashtags in real-time. In Proceedings of the 37th ACM SIGIR International Conference on Research and Development in Information Retrieval, Gold Coast, Australia, 6–11 July 2014; pp. 927–930. [Google Scholar]
- Weng, L.; Menczer, F.; Ahn, Y.Y. Predicting successful memes using network and community structure. In Proceedings of the International AAAI Conference on Web and Social Media, Ann Arbor, MI, USA, 1–4 June 2014; Volume 8, pp. 535–544. [Google Scholar]
- Yu, L.; Xu, X.; Trajcevski, G.; Zhou, F. Transformer-enhanced Hawkes process with decoupling training for information cascade prediction. Knowl.-Based Syst. 2022, 255, 109740. [Google Scholar] [CrossRef]
- Li, C.; Ma, J.; Guo, X.; Mei, Q. DeepCas: An end-to-end predictor of information cascades. In Proceedings of the 26th International Conference on World Wide Web (WWW), Perth, Australia, 3–7 April 2017; pp. 577–586. [Google Scholar]
- Cao, Q.; Shen, H.; Cen, K.; Ouyang, J.; Cheng, X. DeepHawkes: Bridging the gap between prediction and understanding of information cascades. In Proceedings of the 2017 ACM Conference on Information and Knowledge Management (CIKM), Singapore, 6–10 November 2017; pp. 1149–1158. [Google Scholar]
- Jiao, P.; Chen, H.; Bao, Q.; Zhang, W.; Wu, H. Enhancing multi-scale diffusion prediction via sequential hypergraphs and adversarial learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 8571–8581. [Google Scholar]
- Wang, B.; Li, Z.; Xu, Z.; Zhang, J. Casformer: Information Popularity Prediction With Adaptive Cascade Sampling and Graph Transformer in Social Networks. IEEE Trans. Big Data 2025, 11, 1652–1663. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, Q.; Zhu, R.J. Towards popularity prediction of information cascades via degree distribution and deep neural networks. J. Inf. 2023, 17, 101413. [Google Scholar] [CrossRef]
- Jia, X.; Shang, J.; Liu, D.; Zhang, H.; Ni, W. HeDAN: Heterogeneous diffusion attention network for popularity prediction of online content. Knowl.-Based Syst. 2022, 254, 109659. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Ran, Y.; Michalski, R.; Jia, T. CasSeqGCN: Combining network structure and temporal sequence to predict information cascades. Expert Syst. Appl. 2022, 206, 117693. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, Y.; Feng, X. Predicting information diffusion via deep temporal convolutional networks. Inf. Syst. 2022, 108, 102045. [Google Scholar] [CrossRef]
- Yao, L.; Niu, S.; Liao, K.; Zou, G.; Li, K.; Zhao, T. MSAFNet: Multi-Scale Self-Adaptive Feature Fusion Network for AI-Generated Image Detection. Meas. Sci. Technol. 2025, 36, 095402. [Google Scholar] [CrossRef]
- Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [Google Scholar]
- Zhang, J.; Liu, B.; Tang, J.; Chen, T.; Li, J. Social Influence Locality for Modeling Retweeting Behaviors. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), Macao, China, 19–25 August 2013; pp. 2761–2767. [Google Scholar]
- Tang, J.; Zhang, J.; Yao, L.; Li, J.; Zhang, L.; Su, Z. Arnetminer: Extraction and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; pp. 990–998. [Google Scholar]
- Cheng, J.; Adamic, L.; Dow, P.A.; Kleinberg, J.M.; Leskovec, J. Can cascades be predicted? In Proceedings of the 23rd International Conference on World Wide Web (WWW), Seoul, Republic of Korea, 7–11 April 2014; pp. 925–936. [Google Scholar]
- Chen, X.; Zhou, F.; Zhang, K.; Trajcevski, G.; Zhong, T.; Zhang, F. Information diffusion prediction via recurrent cascades convolution. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; pp. 770–781. [Google Scholar]
- Cheng, Z.; Zhou, F.; Xu, X.; Zhang, K.; Trajcevski, G.; Zhong, T.; Yu, P.S. Information Cascade Popularity Prediction via Probabilistic Diffusion. IEEE Trans. Knowl. Data Eng. 2024, 36, 8541–8555. [Google Scholar] [CrossRef]
Symbol | Meaning |
---|---|
Static social network graph | |
Cascade subgraph of message i | |
Cascade graph observed within window T | |
State of node i at time t in window T | |
Out-edge and in-edge adjacency matrices | |
Weight matrix; feature matrix | |
Local snapshot feature at time t | |
GRU hidden state at time t | |
Global temporal representation (from GRU) | |
Sigmoid activation function | |
⊙ | Element-wise multiplication |
Snapshot–temporal fused representation | |
Calibration coefficient (from hypernetwork) | |
Calibrated global representation | |
Cascade growth size within prediction window | |
Mean Squared Logarithmic Error |
Dataset | DBLP | |||||
---|---|---|---|---|---|---|
Obs (T) | 1 h | 2 h | 3 h | 3 y | 5 y | 7 y |
Cascades | 29.3k | 30.1k | 29.6k | 30.1k | 30.0k | 30.0k |
Ave Nodes | 36.6 | 38.4 | 39.9 | 27.6 | 31.3 | 34.3 |
Ave Edges | 30.7 | 32.9 | 33.4 | 33.4 | 44.5 | 50.5 |
Ave Popularity | 184.6 | 128.6 | 101.6 | 30.0 | 16.9 | 8.5 |
Method | |||
---|---|---|---|
1 h | 2 h | 3 h | |
FeatureLinear | 4.468 | 4.187 | 3.697 |
FeatureDeep | 4.431 | 4.197 | 3.733 |
DeepCas | 2.874 | 2.673 | 2.256 |
DeepHawkes | 2.914 | 2.786 | 2.313 |
CasCN | 2.722 | 2.574 | 2.203 |
AECasN | 2.897 | 2.646 | 2.241 |
CasSeqGCN | 2.184 | 2.075 | 1.704 |
CasDo | 2.178 | 1.926 | 1.782 |
Casformer | 2.118 | 1.864 | 1.767 |
CasDacGCN (Ours) | 1.985 | 1.894 | 1.627 |
Method | DBLP | ||
---|---|---|---|
3 Years | 5 Years | 7 Years | |
FeatureLinear | 3.451 | 2.825 | 2.035 |
FeatureDeep | 3.273 | 2.461 | 1.463 |
DeepCas | 1.849 | 1.338 | 0.948 |
DeepHawkes | 1.956 | 1.558 | 0.990 |
CasCN | 1.237 | 1.104 | 0.722 |
AECasN | 1.042 | 0.895 | 0.712 |
CasSeqGCN | 0.884 | 0.735 | 0.527 |
CasDacGCN (Ours) | 0.806 | 0.695 | 0.517 |
Method | DBLP | |||||
---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 3 y | 5 y | 7 y | |
CasDacGCN-HFCM | 2.595 | 2.470 | 2.315 | 1.684 | 1.668 | 1.515 |
CasDacGCN-BCAF | 2.735 | 2.575 | 2.395 | 1.235 | 1.713 | 1.555 |
CasDacGCN | 1.985 | 1.894 | 1.627 | 0.806 | 0.695 | 0.517 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Zhu, Y.; Zhang, Z.; Liao, K.; Niu, S.; Li, B.; Li, H. CasDacGCN: A Dynamic Attention-Calibrated Graph Convolutional Network for Information Popularity Prediction. Entropy 2025, 27, 1064. https://doi.org/10.3390/e27101064
Zhang B, Zhu Y, Zhang Z, Liao K, Niu S, Li B, Li H. CasDacGCN: A Dynamic Attention-Calibrated Graph Convolutional Network for Information Popularity Prediction. Entropy. 2025; 27(10):1064. https://doi.org/10.3390/e27101064
Chicago/Turabian StyleZhang, Bofeng, Yanlin Zhu, Zhirong Zhang, Kaili Liao, Sen Niu, Bingchun Li, and Haiyan Li. 2025. "CasDacGCN: A Dynamic Attention-Calibrated Graph Convolutional Network for Information Popularity Prediction" Entropy 27, no. 10: 1064. https://doi.org/10.3390/e27101064
APA StyleZhang, B., Zhu, Y., Zhang, Z., Liao, K., Niu, S., Li, B., & Li, H. (2025). CasDacGCN: A Dynamic Attention-Calibrated Graph Convolutional Network for Information Popularity Prediction. Entropy, 27(10), 1064. https://doi.org/10.3390/e27101064