Abstract
We develop an action principle for producing a single-fluid two-constituent system with dissipation in general relativity. The two constituents in the model are particles and entropy. The particle flux creation rate is taken to be zero, while the entropy creation rate is non-zero. Building on previous work, it is demonstrated that a new term (the proper time derivative of the matter space “metric”) is required in the Lagrangian in order to produce terms typically associated with bulk and shear viscosity. Equations of motion, entropy creation rate, and energy–momentum–stress tensor are derived. Using an Onsager approach of identifying thermodynamic “forces” and “fluxes”, a model is produced which delivers the same entropy creation rate as the standard, relativistic Navier–Stokes equations. This result is then contrasted with a model generated in the spirit of the action principle, which takes as its starting point a specific Lagrangian and then produces the equations of motion, entropy creation rate, and energy–momentum–stress tensor. Unlike the equations derived from Onsager reasoning, where the analogs of the bulk and shear viscosity coefficients are prescribed “externally”, we find that the forms of the coefficients in the second example are a direct result of the specified Lagrangian. Furthermore, the coefficients are shown to satisfy evolution equations along the fluid worldline, also a product of the specific Lagrangian.
1. Introduction
Breakthrough progress in gravitational-wave astronomy prompts us to revisit “old questions” in relativistic fluid dynamics. In order to provide robust models of binary neutron star mergers (like the celebrated GW170817 event [1,2]) and mixed binary systems involving a neutron star and a black hole (like the recently announced GW230529 event [3]), we need to carry out large-scale numerical simulations incorporating as much of the extreme physics as we can manage [4,5]. In addition to the “live” spacetime of Einstein’s gravity, our simulations need to include the complex matter physics that comes into play at densities beyond nuclear saturation. These aspects must be represented faithfully in order to allow reliable parameter extraction from observed signals. Somewhat colloquially, the stated aim is to “constrain the equation of state” of supranuclear density matter. However, this aim includes a number of issues associated with the systematics of simulations and the extracted model waveforms. This, in turn, raises problems which become pressing for the development of the next generation of gravitational-wave instruments (the Einstein Telescope in Europe and Cosmic Explorer in the USA). These instruments will be sensitive at higher frequencies than the current LIGO–Virgo–Kagra interferometers and are expected to observe the post-merger phase, in addition to the late inspiral phase currently seen.
State-of-the-art simulations tell us that binary mergers involve high-density matter at temperatures close to those reached in terrestrial collider experiments (up to 100 MeV) [6]. At these extreme temperatures, the fluid will be far from thermodynamical equilibrium and the role of neutrinos is expected to be paramount [6]. Recent numerical relativity experiments [7,8,9] indicate that out-of-equilibrium physics (in the form of bulk vicosity and/or neutrino transport) will affect the gravitational-wave signal at a “detectable” level. In order to explore the relevant physics, we evidently need to incorporate non-equilibrium aspects in our numerical simulations. In effect, we need to consider dissipative general relativistic fluid dynamics [10].
The implementation of dissipation in relativistic fluid dynamics is known to be tricky, both conceptually and practically. While there has been important recent progress on issues relating to stability and causality [11,12], we still do not have a universally agreed-upon “framework” that would allow us to consider the complete range of physics that comes into play in neutron star mergers. Mergers combine a highly energetic, turbulent flow of beyond-nuclear-density matter; strong magnetic fields; and a dynamical spacetime generating copious amounts of gravitational waves. These events are unique because they operate over an impressive range of spatial scales. At the smallest scales, they provide data for the matter equation of state [13,14,15,16], while at large scales they may form long-lived merger remnants (possibly eventually forming black holes [4,5,17]). Rapid nuclear reactions during low-density matter outflows may lead to observable kilonova signatures [18]. Observed short gamma-ray bursts may be explained as the twisting of the stars’ magnetic field, which would help collimate an emerging jet [19]. Multi-messenger observations of these events will—at some level—encode dissipative aspects (ranging from the bulk viscosity in the merger remnant [6,8] to resistivity affecting the evolution of the magnetic field [20,21,22]).
Arguably, the most “complete” framework for modelling the physics we need to consider is the fully covariant variational approach reviewed in [10]. Notably, recent developments of the variational strategy include dissipative effects [23]. This effort is motivated by the requirements from gravitational-wave astronomy, and provides an action principle for general relativistic multi-fluid systems for which no explicit reference to an equilibrium state is required and as a result the field equations are fully non-linear. This is in sharp contrast to other models for dissipative relativistic fluid dynamics which build on a phenomenological derivative expansion (away from a supposed equilibrium state). The main idea of the variational model is that the dynamical degrees of freedom of fluids are captured by fluxes, and if the flux for a fluid has non-zero covariant divergence, or, equivalently, its associated dual three-form is not closed, then there will be dissipation. Conceptually, the idea is clear but we are still quite far from turning this understanding into a complete “workable” model.
The aim of the present discussion is to take steps to improve the situation by building an explicit action principle which connects with the familiar Navier–Stokes equations. The spirit of the approach is very similar to that of, for example, refs. [24,25,26], where the matter space coordinates are treated as fields in the variation. The close connection between the two approaches has already been discussed in detail in [10]. While we will not make further comparison here, it is clear that progress in either direction can be translated into the other framework and it would certainly be worth paying attention to this in the future. Our focus here is on the geometrical aspects of the problem—including relevant symmetries—some of which are directly connected with the spacetime metric and hence unique to the context of general relativity. We focus on the mathematical formalism, leaving a discussion of the deeper connection to statistical mechanics and the precise role of microscopic fluctuations (see, e.g., ref. [27] for a useful survey) for follow-up work. This strategy makes sense because issues related to the underlying physics are somewhat distinct from the geometric aspects which are the focus here. The deeper connections need to be explored once a self-consistent mathematical framework is in place so work in this direction should certainly be encouraged.
We could perhaps claim to be motivated by the old (often paraphased) proverb that necessity is the mother of invention. Google suggests that one of the earliest statements of this proverb is to be found in the Aesop’s Fable “The Crow and the Pitcher” (see, e.g., https://read.gov/aesop/001.html (accessed on 30 May 2024).) Alternatively, we can draw inspiration from Plato’s Republic and the comment “our need will be the real creator” (Benjamin Jowett, Plato’s Republic: The Greek Text, 1894, 3:82 “Notes” Jowett, Book II, 369c). Staying closer to science, Alfred North Whitehead argued in an address to the Mathematical Association of England that “the basis of invention is science, and science is almost wholly the outgrowth of pleasurable intellectual curiosity”. Perhaps curiosity—pleasurable or not—is the main driver for the current effort? Maybe we are just stumbling around in the dark, with “necessity is the mother of futile dodges” (Julius A. Sigler, Education: Ends and Means. University Press of America. p. 140.) in mind… There are different possible attitudes, but theoretical, experimental, and observational investigations of viscous fluids have, at some time or other, embodied the sentiments of each of the above quotes. This may simply be a reflection of how challenging the problem is. The work presented here provides, we believe, a unique perspective (but we cannot yet say if this is more than a futile dodge).
Our discussion will introduce a number of “simplifications”. Most notably, we will restrict ourselves to a single-fluid model. In some sense, this is against “better judgement” because we know that issues like heat/entropy flow require a multi-fluid treatment [10]. Moreover, the variational framework readily allows for multi-fluid aspects to be incorporated. However, if we want to make contact with numerical simulations (and we do!) then it must be noted that such efforts reduce the analysis to a single fluid whenever this is possible. Hence, it makes sense to see how far we can go if we restrict the variational discussion in this sense from the outset. The obvious caveat to this statement of intent is that we should perhaps not expect the effort to be completely successful. We are cutting corners and this ought to impact on the model we arrive at. Having said that, we expect to learn useful lessons from the exercise. The calculation we present is perhaps mainly interesting from a conceptual perspective, but the derivation also highlights aspects that need to be included in more realistic models. For example, we will show that a new fluid variable (the proper time derivative of the matter space “metric”) must be included in the original Lagrangian of [23] in order to recover the expected terms associated with bulk and shear viscosity. This new inclusion, in turn, affects the field equations, the entropy creation rate, and the energy–momentum–stress tensor. Additionally, we provide an explicit formulation of the matter space entropy three-form, going beyond the phenomenology explored in previous work. The results show that evolution equations along worldlines naturally arise in the model, as one might expect from a relativistic formulation.
In Section 2, the generic action is written down and a variation with respect to the field variables (particle and entropy flux and the spacetime metric) is given. In Section 3, abstract, three-dimensional “matter” spaces are introduced so that the fluxes can be reformulated in such a way that the action principle becomes viable. Section 4 uses the same approach as [23] to build the required variations of the field variables, in particular, the Lagrangian displacement in Section 4.2. While the approach is the same, derivatives of the matter space metrics are assumed in the generic functional form of the action. This is because models like thetraditional Navier–Stokes are not possible without such derivatives in the Lagrangian. In Section 5, all the ingredients are stirred together and poured back into the initial variation of Section 2. The fluid field equation, entropy creation rate, and energy–momentum–stress tensor are derived. In Section 6, a specific form for the Lagrangian is written down. In Appendix A, we provide details of the derivations of key elements of the formalism. While the results of the derivations are essential to delivering the final product, the calculations themselves are not necessary during a first reading of this paper.
2. The Fluid Action
In the variational approach, the equations of motion are derived from an action principle which has as its Lagrangian the so-called “master” function (see [10] for an extensive review). For a finite-temperature single-component system (as considered here), the master function is a function of all the independent scalars which can be built using the spacetime metric , the particle flux , and the entropy flux . However, here we restrict ourselves by only considering and (excluding the quantity , known to be associated with entropy entrainment [10]). The action is then given by
The variation of with respect to , , and is
where we have used the fact that
and defined
As we restrict our analysis to systems with a single-fluid degree of freedom, the two constituents, particles and entropy, must be co-moving. We denote the corresponding unit four-velocity as , with normalization (in geometric units). The particle flux is now , and the entropy flux is , where the particle density is given by and the entropy density is . We also note that the chemical potential is given by and the temperature follows from .
The derivation of the equations of motion is complicated by the fact that our variation of the fluxes and must involve, indirectly, the variation of the worldlines given by . Because everywhere, it has only three degrees of freedom. The impact of this can be seen already in above. The equations of motion result when arbitrary variations of the field degrees of freedom do not change to linear order; i.e., . If we consider arbitrary variations and , then the equations of motion are simply , which do not recover the simplest perfect fluid equations.
As shown in [28], building a viable action for two different “particle” constituents, such as matter and entropy, and one four-velocity, is straight-forward in the non-dissipative (perfect fluid) regime; even the generalization to a non-dissipative system of, say, M-constituents and N-fluids follows naturally (see [10] for details). Building on this, Andersson and Comer [23] demonstrated how to take the basic principles built into these actions and developed a fully non-linear set of field equations for dissipative fluids. But, as we will demonstrate in the next section, it is not straight-forward, a priori, to extend single-fluid actions to dissipative systems (as represented by, for example, the traditional Navier–Stokes equations).
3. Matter Space and Flux Setup
Let us introduce the necessary ingredients of a viable action principle for a single fluid of matter and entropy which has dissipation. The first step is to introduce two abstract three-dimensional Riemannian (“matter space”) manifolds, whose individual points correspond to individual fluid worldlines in spacetime. The second step is to assume that the two manifolds are diffeomorphic to each other. A fair bit of infrastructure will have to be built before reaching the action principle and the resulting field equations; in particular, a lot of detail on the so-called matter space metrics must be included as these were shown in [23] to be essential elements required for dissipation. Some of the more tedious details of the infrastructure construction are presented in Appendix A.
3.1. The Matter Space Setups
First of all, we introduce the two three-dimensional Riemannian manifolds that are diffeomorphic to each other. The first of these, the abstract particle space, is labeled by the coordinates (), and the second, for the abstract entropy space, is labeled by the coordinates . Because the two spaces are diffeomorphic to each other, there are two mappings and whereby
and
Both sets, and , are scalar functions on spacetime, with the property that each unique wordline of the field is mapped to a unique point in the matter space and a unique point in the entropy space.
Next, spacetime-index-carrying objects, like , , and the metric , can be identified with objects carrying matter space indices (such as the particle and entropy, respectively, densities and introduced below) through use of the maps
and
The maps are connected to each other via the chain rule, i.e.,
The four maps will be shown later to be preserved along the worldlines of (i.e., they are Lie-dragged by the fluid flow).
3.2. The Particle and Entropy Flux, Chemical Potential, Temperature, and Metric Constructs
The and maps allow us to “pull-back/push-forward” index-carrying objects in spacetime and the matter spaces. To begin, we replace the fluxes and with their respective dual three-forms and , namely,
The particle space three-form and the entropy space three-form are then related to the above as
Similarly, we introduce the dual three-forms for and , i.e.
to obtain the matter space chemical potential and temperature three-forms, respectively:
The remaining dynamical field is the spacetime metric . Using the maps and we may construct three matter space “metrics” , , and (we will see later that these fields are essential components of an action-based dissipative system):
Because of the chain rule, we have
Locally (on matter space), these objects transform as tensors. However, for our purposes it is better to view the index-carrying objects as matrices and the transformations as matrix products. Note that the use of multiple matter space metrics (although on different, but linked, manifolds) was the way that [23] introduced dissipation into a relativistic action principle.
3.3. Mapping , , and to Spacetime Three-Metrics Perpendicular to
Our goal here is to introduce dissipation into the relativistic fluid theory. It is well established in the literature that the form is the principal object that shows up in the different channels of dissipation (bulk, shear, etc.). The various channels of dissipation are extracted through the use of a well-known decomposition of , namely,
The here is directly connected with since
Obviously, , which means and , as well. It is also the case that and . Finally, because , we have .
The pull-back of , , and leads to five distinct “metric” tensors on spacetime which are spacelike with respect to the worldlines:
However, because , we will simplify the analysis by restricting all of these objects to be conformal to , i.e.
4. The Nuts and Bolts of the Action Variation
We will now show that the proper-time derivatives , , and are directly connected to , , and . The implication of this is that any recovery of, say, the Navier–Stokes equations via the action principle means that , , and must be included as independent variables in the field variations.
The result follows because the master function is commonly left unspecified in the action-based approach: usually, only its existence and the fields/fluxes it depends on are postulated. If an explicit master function can be provided, then the dependence of this on the fields’ derivatives will automatically be taken care of by the variational principle. We also note that [29] works around this issue by considering the dissipative fluxes as functionals of, say, the “metric” . In the present context, however, we try to avoid that as this would inevitably make the discussion somewhat phenomenological.
4.1. Matter Space Maps and Metric Derivatives
In Appendix A.3, it is shown (in Equation (A28)) that
This leads to the important consistency check that
which must hold because the map is contracted four times on but has only three components. This means the and are Lie-dragged along the fluid worldlines, which is expected because the basic role of the maps and is to identify specific wordlines on spacetime with specific points in the matter spaces.
Because is a function of , then is also a function of , and because is a function of , then is a function of . Given that , we see
Once the maps are specified at a given point on a worldline, they will not change on future points of the same worldline, which is ultimately due to our assumption that the particle and entropy spaces are diffeomorphic to each other.
To establish rules for taking derivatives of the matter space metrics, we need to develop further properties of the maps and : First, because the are scalars, then
This and the Lie dragging of the along allows us to write
Hence, the Lie derivative of with respect to is
and similarly
therefore, the maps are also Lie dragged along the worldlines. These can be combined to show
Using Equation (28), we see that
where . We also have
and
If we contract both sides of Equation (31) with , we have
Later, when we take partial derivatives of Equation (79) as one of the necessary steps of the action principle, the three quantities , , and are treated as being independent. This prompts us to introduce
to recognize the independence of , , and . In the variations that occur in the action, we need to recognize also that the three are independent of each other. Once the variations are completed, then the three can be set equal to each other (as in (34)).
The conformal factors and satisfy () since the first is a function only of and the second depends on only . The proper-time derivative is more complicated, namely,
where we have used the fact that because we can replace with
This implies that if for every value , and does not remain constant, then .
Finally, we will work out the proper-time derivative of . Begin by noting that
and therefore
4.2. The Lagrangian Displacement
The key step to finding the correct equations of motion is to make sure that the variations and incorporate the Lie dragging of and . We achieve this by using the Lagrangian displacement , where is the Lie derivative along a spacetime displacement . It is a measure of how a quantity changes with respect to fluid observers, who ride along with the worldlines. When we consider the action principle, we are then looking for variations that lead to .
When a worldline is varied it must still be the case that its own and remain fixed. The implication, then, is that and must be such that they lead to ; hence, we find
Obviously,
The next thing is to use these to “fix” the variations and so that the action principle delivers viable equations of motion and an energy–momentum–stress tensor that can be inserted into the Einstein equations to determine the gravitational field.
We will start by deriving , , and . To facilitate this, we can show
Now, we find for , , and that
where we have used the essential relation
It will be the case that we need to incorporate into our scheme, meaning we will have to also work out . The starting point is
From Equation (A28) in Appendix A.3, we can infer that
where we have used
Next (see (A29) in Appendix A.4 for details),
and therefore (see Equation (A30) in Appendix A.4),
5. The Field Equations
The “trick” that incorporates dissipation in the variational formulation is to specify that the functional dependencies of and are
It is clear that , since it only depends on . Consequently, the particle flux creation rate is shown to vanish; i.e., using the fact that , etc., we have
However, the extra dependencies for , as we will see below, lead to a non-zero entropy creation .
5.1. Construction of
To work out , we first determine , using the form given in Equation (52):
Since and , we see and therefore
Noting that
we see
where we have used
Finally, we have
5.2. Construction of
To perform the setup for , we note that is
where the form given in Equation (52) has been used. Recalling that , we see
which implies
Now we can rewrite as
so that
When we define, following the notation in [23],
(where , , and likewise for the others), and
we find (see (A31) in Appendix A.5)
Therefore,
5.3. The General Variation of the Action
Now that both and are in place, we find that the variation of the action is
where represents all the “boundary terms” that come from the total derivatives. The equation of motion is
the entropy creation rate is (see Equation (A32) in Appendix A.5)
and the energy–momentum–stress tensor is
with the generalized pressure defined as
7. Concluding Remarks
Building on the variational approach for dissipative relativistic fluids from [23], we have taken steps towards formulating an explicit action principle that connects with the familiar Navier–Stokes equations. In general, the variational approach is built around matter and entropy fluxes (taken to be the primary degrees of freedom) and dissipation arises if the dual three-form associated with a given flux is not closed. As discussed in [23], this allows us to represent a number of dissipative channels, but the general model is too “rich” to permit an intuitive interpretation. Given this, we introduced a number of simplifications aimed at reducing the complexity of the model and highlighting the key features. Most notably, we restricted ourselves to a single-fluid model. The motivation for this (somewhat drastic, given that we know that issues like heat/entropy flows require a multi-fluid approach [10]) assumption was to make contact with numerical simulations which tend to reduce the analysis to a single fluid for practical reasons.
Given the various simplifications introduced in our derivation of the fluid equations, the fact that the final result appears somewhat unfinished is perhaps not surprising. However, we would argue that the analysis provides several useful lessons. For example, we have seen that the proper time derivative of the matter space “metric” must be included in the matter Lagrangian in order to recover the expected terms associated with bulk and shear viscosity. The discussion also shows that evolution equations along fluid worldlines arise naturally in the model, a feature one might expect from a relativistic description. At the same time, the construction added a less desirable term to the entropy creation rate. The upshot is that the final model presented here is satisfactory—in the sense that it is compatible with the second law (implemented locally)—as long as we only allow for the presence of shear viscosity. The addition of bulk viscosity requires further thought.
To make progress, we may go back to the beginning and relax the simplifying assumptions one by one. This will make the discussion more involved, but at this point this seems unavoidable. Noting that, from an implementation point of view, single-fluid models are much easier to work with than multi-fluid ones, it would certainly be interesting to see how much closer to a “workable” dissipative fluid model we can get without relaxing the single-fluid assumption. If we have to account for the explicit multi-fluid aspects, then the framework for this already exists (see [10]), but we need to be mindful of the fact that we are still quite far from having developed such models to the level where they are ready for numerical implementation.
Author Contributions
All authors contributed equally to the work presented in this paper, from the conceptualization to the development of the model and the writing of the manuscript. All authors have read and agreed to the published version of the manuscript.
Funding
N.A. acknowledges support from STFC in the UK via grant number ST/V000551/1. T.C. is an ICE Fellow and is supported through the Spanish program Unidad de Excelencia Maria de Maeztu CEX2020-001058-M.
Institutional Review Board Statement
Not applicable.
Data Availability Statement
Data is contained within the article.
Conflicts of Interest
The authors declare no conflicts of interest.
Appendix A. Details Behind the Derivation of Important Relations
Appendix A.1. Metric and Map Inverses
Note that is an essential component of this process of pull-back and push-forward. It and its inverse satisfy some useful identities:
In a similar way, we can introduce the three-forms and inverses , which have a similar set of identities:
Using basic linear algebra techniques (Cramer’s rule), it can be shown that the matter space metric inverses , , are given by
where
and
Because of Equation (A2),
It is also the case that
where
and
Appendix A.2. Mappings between , , and
In order to establish the rule for mapping to , and vice versa, we can show that the standard rules involving Jacobians apply. For this, we work out , and the rest follow similarly:
This means that the inverse is mapped to via
that is,
Starting with the fact that , and using Equation (6), it can be shown that
Finally, we also determine the connections with :
With this, it can be shown that
Consequently,
Appendix A.3. Matter Space Volume Forms
The next step is to establish the rules for identifying the spacetime objects with their matter space counterparts, and to determine how to connect the particle space objects with the entropy space ones. Two essential ingredients for this are the completely antisymmetric objects and , whose defining properties are given in Equation (A5).
It must be the case that and are proportional to and , respectively, i.e., and , and that and are proportional to and , respectively, i.e., and . Equation (A5) then implies
It is easy to see that
and
From the definitions of and we have
This implies
and therefore and . It is now straightforward to show that
and similarly for and . Finally, we find
and therefore
Appendix A.4. Matter Space Metric Variations
Steps leading to Equation (48) in the main text:
The major steps used to develop the cross-listed Equation (49) in the main text:
Appendix A.5. Entropy Creation Rate Derivation
The major steps used to develop the cross-listed Equation (A31) in the main text:
Steps leading to the entropy creation rate start with projecting the equation of motion Equation (70) onto :
Appendix A.6. Useful Partial Derivatives
A few useful formulas are
References
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar]
- The LIGO Scientific Collaboration; The Virgo Collaboration; The KAGRA Collaboration. Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compact Object and a Neutron Star. arXiv 2024. [CrossRef]
- Baiotti, L.; Rezzolla, L. Binary neutron star mergers: A review of Einstein’s richest laboratory. Rep. Prog. Phys. 2017, 80, 096901. [Google Scholar] [CrossRef] [PubMed]
- Bernuzzi, S. Neutron star merger remnants. Gen. Relativ. Gravit. 2020, 52, 108. [Google Scholar] [CrossRef]
- Hammond, P.; Hawke, I.; Andersson, N. Thermal aspects of neutron star mergers. Phys. Rev. D 2021, 104, 103006. [Google Scholar] [CrossRef]
- Hammond, P.; Hawke, I.; Andersson, N. Impact of nuclear reactions on gravitational waves from neutron star mergers. Phys. Rev. D 2023, 107, 043023. [Google Scholar] [CrossRef]
- Most, E.R.; Haber, A.; Harris, S.P.; Zhang, Z.; Alford, M.G.; Noronha, J. Emergence of microphysical viscosity in binary neutron star post-merger dynamics. arXiv 2022, arXiv:2207.00442. [Google Scholar]
- Espino, P.L.; Hammond, P.; Radice, D.; Bernuzzi, S.; Gamba, R.; Zappa, F.; Micchi, L.F.L.; Perego, A. Neutrino trapping and out-of-equilibrium effects in binary neutron star merger remnants. arXiv 2023. [Google Scholar] [CrossRef]
- Andersson, N.; Comer, G.L. Relativistic fluid dynamics: Physics for many different scales. Living Rev. Relativ. 2021, 24, 3. [Google Scholar] [CrossRef]
- Bemfica, F.S.; Disconzi, M.M.; Noronha, J. Causality and existence of solutions of relativistic viscous fluid dynamics with gravity. Phys. Rev. D 2018, 98, 104064. [Google Scholar] [CrossRef]
- Kovtun, P. First-order relativistic hydrodynamics is stable. J. High Energy Phys. 2019, 2019, 34. [Google Scholar] [CrossRef]
- Oertel, M.; Hempel, M.; Klähn, T.; Typel, S. Equations of state for supernovae and compact stars. Rev. Mod. Phys. 2017, 89, 015007. [Google Scholar] [CrossRef]
- Fiorella Burgio, G.; Fantina, A.F. Nuclear Equation of state for Compact Stars and Supernovae. Astrophys. Space Sci. Libr. 2018, 457, 255–335. [Google Scholar]
- Vidaña, I. Hyperons: The strange ingredients of the nuclear equation of state. Proc. R. Soc. Lond. A 2018, 474, 0145. [Google Scholar] [CrossRef]
- Lattimer, J. Neutron Stars and the Nuclear Matter Equation of State. Annu. Rev. Nucl. Part. Sci. 2021, 71, 433–464. [Google Scholar] [CrossRef]
- Shibata, M.; Hotokezaka, K. Merger and Mass Ejection of Neutron Star Binaries. Annu. Rev. Nucl. Part. Sci. 2019, 69, 41–64. [Google Scholar] [CrossRef]
- Metzger, B.D. Kilonovae. Living Rev. Relativ. 2017, 20, 3. [Google Scholar] [CrossRef] [PubMed]
- Ciolfi, R. The key role of magnetic fields in binary neutron star mergers. Gen. Relativ. Gravit. 2020, 52, 59. [Google Scholar] [CrossRef]
- Palenzuela, C.; Lehner, L.; Reula, O.; Rezzolla, L. Beyond ideal MHD: Towards a more realistic modelling of relativistic astrophysical plasmas. Mon. Not. R. Astron. Soc. 2009, 394, 1727–1740. [Google Scholar] [CrossRef]
- Dionysopoulou, K.; Alic, D.; Palenzuela, C.; Rezzolla, L.; Giacomazzo, B. General-relativistic resistive magnetohydrodynamics in three dimensions: Formulation and tests. Phys. Rev. D 2013, 88, 044020. [Google Scholar] [CrossRef]
- Wright, A.J.; Hawke, I. Resistive and Multi-fluid RMHD on Graphics Processing Units. Astrophys. J. Suppl. Ser. 2019, 240, 8. [Google Scholar] [CrossRef]
- Andersson, N.; Comer, G.L. A covariant action principle for dissipative fluid dynamics: From formalism to fundamental physics. Class. Quant. Grav. 2015, 32, 075008. [Google Scholar] [CrossRef]
- Dubovsky, S.; Hui, L.; Nicolis, A.; Son, D.T. Effective field theory for hydrodynamics: Thermodynamics, and the derivative expansion. Phys. Rev. D 2012, 85, 085029. [Google Scholar] [CrossRef]
- Grozdanov, S.C.V.; Polonyi, J. Viscosity and dissipative hydrodynamics from effective field theory. Phys. Rev. D 2015, 91, 105031. [Google Scholar] [CrossRef]
- Montenegro, D.; Torrieri, G. Lagrangian formulation of relativistic Israel-Stewart hydrodynamics. Phys. Rev. D 2016, 94, 065042. [Google Scholar] [CrossRef]
- Kovtun, P. Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. A 2012, 45, 473001. [Google Scholar] [CrossRef]
- Comer, G.; Langlois, D. Hamiltonian Formulation for Multi-constituent Relativistic Perfect Fluids. Class. Quantum Grav. 1993, 10, 2317–2327. [Google Scholar] [CrossRef]
- Celora, T.; Andersson, N.; Comer, G.L. Linearizing a non-linear formulation for general relativistic dissipative fluids. Class. Quantum Grav. 2021, 38, 065009. [Google Scholar] [CrossRef]
- Andersson, N.; Comer, G. A Flux-Conservative Formalism for Convective and Dissipative Multi-Fluid Systems, with Application to Newtonian Superfluid Neutron Stars. Class. Quantum Grav. 2006, 23, 5505–5529. [Google Scholar] [CrossRef]
- Yourgrau, W.; van der Merwe, A.; Raw, G. Treatise on Irreversible and Statistical Thermodynamics; Dover Publications: Mineola, NY, USA, 2002; p. 292. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).