# Kaniadakis Functions beyond Statistical Mechanics: Weakest-Link Scaling, Power-Law Tails, and Modified Lognormal Distribution

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

- We formulate an autoregressive, intermittent precipitation model based on the $\kappa $-modified Box–Cox transform in Section 3.3. We show that the resulting precipitation time series has higher “peaks” than those obtained with the Box–Cox transform with the same parameter value.
- We review the $\kappa $-Weibull distribution focusing on its connection with weakest-link theory (Section 4). This demonstrates that the $\kappa $-Weibull is a physically motivated generalization of the classical Weibull distribution for the mechanical strength of brittle materials, unlike modified Weibull distributions which fail to satisfy the weakest-link principle.
- We show that for several physical quantities, including the thickness of magmatic sheet intrusions, the tensile strength of steel, earthquake waiting times, and precipitation amounts the $\kappa $-Weibull distribution provides a better fit than the Weibull according to model selection criteria.
- We introduce the $\kappa $-lognormal distribution, which provides a deformation of the lognormal with lighter tails than the latter in Section 5. The $\kappa $-lognormal can be used to model asymmetric data distributions which concentrate more probability mass around the median than the lognormal. We discuss the importance of the generalized mean (power mean) of the lognormal distribution for estimating the effective permeability of heterogeneous porous media, and we calculate the generalized mean of the $\kappa $-lognormal distribution.

## 2. Mathematical Preliminaries

#### 2.1. The $\kappa $-Exponential Function

#### 2.2. The $\kappa $-Logarithm Function

## 3. Nonlinear Transformation of Data Based on the $\mathbf{\kappa}$-Logarithm

#### 3.1. Box–Cox Transform and the Replica Trick

#### 3.2. The $\kappa $-Logarithmic Transform

#### 3.3. Application to Precipitation Modeling

## 4. The $\mathbf{\kappa}$-Weibull Distribution and Its Applications

#### 4.1. $\kappa $-Weibull Probability Functions

#### 4.2. Connection with Weakest-Link Scaling Theory

#### 4.3. $\kappa $-Weibull Plot for Graphical Testing

#### 4.4. Application to Real Data

## 5. The $\mathbf{\kappa}$-Lognormal Distribution

#### 5.1. Effective Permeability of Random Media

#### 5.2. Generalized Mean of the $\kappa $-Lognormal Distribution

## 6. Discussion

## 7. Conclusions

- The modified Box–Cox transform given by Equation (22).
- Application of the modified Box–Cox transform to an autoregressive, intermittent model of precipitation as described in Section 3.3.
- Connection between the $\kappa $-Weibull probability model with the theory of weakest-link scaling as shown in Section 4.2.
- The study of the $\kappa $-lognormal distribution which is a generalization of the lognormal model with lighter tails. The PDF of this new model is given by Equation (32).
- The calculation of the power-mean (generalized mean) of the $\kappa $-lognormal as shown in Section 5.2.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

AR | Autoregressive |

AIC | Akaike Information Criterion |

BCT | Box-Cox transform |

BIC | Bayesian Information Criterion |

CDF | Cumulative distribution function |

KLT | $\kappa $-logarithm transform |

LLM | Landau-Lifshitz-Matheron (ansatz) |

NLL | Negative log-likelihood |

Probability density function |

## References

- Abaimov, S.G.; Turcotte, D.L.; Rundle, J.B. Recurrence-time and frequency-slip statistics of slip events on the creeping section of the San Andreas fault in central California. Geophys. J. Int.
**2007**, 170, 1289–1299. [Google Scholar] [CrossRef] - Abaimov, S.G.; Turcotte, D.; Shcherbakov, R.; Rundle, J.B.; Yakovlev, G.; Goltz, C.; Newman, W.I. Earthquakes: Recurrence and interoccurrence times. Pure Appl. Geophys.
**2008**, 165, 777–795. [Google Scholar] [CrossRef] - El Adlouni, S.; Bobée, B.; Ouarda, T.B. On the tails of extreme event distributions in hydrology. J. Hydrol.
**2008**, 355, 16–33. [Google Scholar] [CrossRef] - Akinsete, A.; Famoye, F.; Lee, C. The beta-Pareto distribution. Statistics
**2008**, 42, 547–563. [Google Scholar] [CrossRef] - Alava, M.J.; Phani, K.V.V.N.; Zapperi, S. Size effects in statistical fracture. J. Phys. D Appl. Phys.
**2009**, 42, 214012. [Google Scholar] [CrossRef] - Hagiwara, Y. Probability of earthquake occurrence as obtained from a Weibull distribution analysis of crustal strain. Tectonophysics
**1974**, 23, 313–318. [Google Scholar] [CrossRef] - Hasumi, T.; Akimoto, T.; Aizawa, Y. The Weibull-log Weibull transition of the interoccurrence time statistics in the two-dimensional Burridge-Knopoff earthquake model. Phys. A Stat. Mech. Its Appl.
**2009**, 388, 483–490. [Google Scholar] [CrossRef] - Hasumi, T.; Akimoto, T.; Aizawa, Y. The Weibull-log Weibull distribution for interoccurrence times of earthquakes. Phys. A Stat. Mech. Its Appl.
**2009**, 388, 491–498. [Google Scholar] [CrossRef] - Allard, D.; Bourotte, M. Disaggregating daily precipitations into hourly values with a transformed censored latent Gaussian process. Stoch. Environ. Res. Risk Assess.
**2015**, 29, 1436–3259. [Google Scholar] [CrossRef] - Baxevani, A.; Lennatsson, J. A spatiotemporal precipitation generator based on a censored latent Gaussian field. Water Resour. Res.
**2015**, 51, 4338–4358. [Google Scholar] [CrossRef] [Green Version] - Papalexiou, S.M.; Serinaldi, F. Random fields simplified: Preserving marginal distributions, correlations, and intermittency, with applications from rainfall to humidity. Water Resour. Res.
**2020**, 56, e2019WR026331. [Google Scholar] [CrossRef] - Papalexiou, S.M.; Serinaldi, F.; Porcu, E. Advancing space-time simulation of random fields: From storms to cyclones and beyond. Water Resour. Res.
**2021**, 57, e2020WR029466. [Google Scholar] [CrossRef] - Pickens, J.F.; Grisak, G.E. Scale-dependent dispersion in a stratified granular aquifer. Water Resour. Res.
**1981**, 17, 1191–1211. [Google Scholar] [CrossRef] - Sudicky, E.A. A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour. Res.
**1986**, 22, 2069–2082. [Google Scholar] [CrossRef] - Hess, K.M.; Wolf, S.H.; Celia, M.A. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 3. Hydraulic conductivity variability and calculated macrodispersivities. Water Resour. Res.
**1992**, 28, 2011–2027. [Google Scholar] [CrossRef] - Hristopulos, D.T. Renormalization group methods in subsurface hydrology: Overview and applications in hydraulic conductivity upscaling. Adv. Water Resour.
**2003**, 26, 1279–1308. [Google Scholar] [CrossRef] - Amaral, P.M.J.; Cruz Fernandes, L.G.R. Weibull statistical analysis of granite bending strength. Rock Mech. Rock Eng.
**2008**, 41, 917–928. [Google Scholar] [CrossRef] - Hristopulos, D.T.; Mouslopoulou, V. Strength statistics and the distribution of earthquake interevent times. Phys. A Stat. Mech. Its Appl.
**2013**, 392, 485–496. [Google Scholar] [CrossRef] - Bazant, Z.P.; Pang, S.D. Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture. J. Mech. Phys. Solids
**2007**, 55, 91–131. [Google Scholar] [CrossRef] - Pang, S.D.; Bazant, Z.; Le, J.L. Statistics of strength of ceramics: Finite weakest-link model and necessity of zero threshold. Int. J. Fract.
**2008**, 154, 131–145. [Google Scholar] [CrossRef] - Bazant, Z.P.; Le, J.L.; Bazant, M.Z. Scaling of strength and lifetime probability distributions of quasibrittle structures based on atomistic fracture mechanics. Proc. Natl. Acad. Sci. USA
**2009**, 1061, 11484–11489. [Google Scholar] [CrossRef] - Zok, F.W. On weakest link theory and Weibull statistics. J. Am. Ceram. Soc.
**2017**, 100, 1265–1268. [Google Scholar] [CrossRef] - Sornette, D. Critical Phenomena in Natural Sciences, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Marković, D.; Gros, C. Power laws and self-organized criticality in theory and nature. Phys. Rep.
**2014**, 536, 41–74. [Google Scholar] [CrossRef] - Bak, P.; Christensen, K.; Danon, L.; Scanlon, T. Unified Scaling Law for Earthquakes. Phys. Rev. Lett.
**2002**, 88, 178501. [Google Scholar] [CrossRef] - Newman, M.E. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys.
**2005**, 46, 323–351. [Google Scholar] [CrossRef] - Clauset, A.; Shalizi, C.; Newman, M. Power-law distributions in empirical data. SIAM Rev.
**2009**, 51, 661–703. [Google Scholar] [CrossRef] - Kaniadakis, G. Maximum entropy principle and power-law tailed distributions. Eur. Phys. J. B
**2009**, 70, 3–13. [Google Scholar] [CrossRef] - Siegenfeld, A.F.; Bar-Yam, Y. An introduction to complex systems science and its applications. Complexity
**2020**, 2020, 6105872. [Google Scholar] [CrossRef] - Taleb, N.N. Statistical consequences of fat tails: Real world preasymptotics, epistemology, and applications. arXiv
**2020**, arXiv:2001.10488. [Google Scholar] - Kaniadakis, G. H-theorem and generalized entropies within the framework of nonlinear kinetics. Phys. Lett. A
**2001**, 288, 283–291. [Google Scholar] [CrossRef] - Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Phys. A Stat. Mech. Its Appl.
**2001**, 296, 405–425. [Google Scholar] [CrossRef] [Green Version] - Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E
**2002**, 66, 056125. [Google Scholar] [CrossRef] - Kaniadakis, G. Statistical mechanics in the context of special relativity II. Phys. Rev. E
**2005**, 72, 036108. [Google Scholar] [CrossRef] - Kaniadakis, G. New power-law tailed distributions emerging in κ-statistics. EPL (Europhys. Lett.)
**2021**, 133, 10002. [Google Scholar] [CrossRef] - Leubner, M.P. A nonextensive entropy approach to kappa-distributions. Astrophys. Space Sci.
**2002**, 282, 573–579. [Google Scholar] [CrossRef] - Pierrard, V.; Lazar, M. Kappa distributions: Theory and applications in space plasmas. Sol. Phys.
**2010**, 267, 153–174. [Google Scholar] [CrossRef] - Klessen, R.; Burkert, A. The formation of stellar clusters: Gaussian cloud conditions. I. Astrophys. J. Suppl. Ser.
**2000**, 128, 287–319. [Google Scholar] [CrossRef] - Clementi, F.; Gallegati, M.; Kaniadakis, G. κ-generalized statistics in personal income distribution. Eur. Phys. J. B
**2007**, 57, 187–193. [Google Scholar] [CrossRef] - Clementi, F.; Di Matteo, T.; Gallegati, M.; Kaniadakis, G. The κ-generalized distribution: A new descriptive model for the size distribution of incomes. Physica
**2008**, 387, 3201–3208. [Google Scholar] [CrossRef] - Clementi, F.; Gallegati, M.; Kaniadakis, G. A κ-generalized statistical mechanics approach to income analysis. J. Stat. Mech. Theory Exp.
**2009**, P02037. [Google Scholar] [CrossRef] - Kaniadakis, G.; Baldi, M.M.; Deisboeck, T.S.; Grisolia, G.; Hristopulos, D.T.; Scarfone, A.M.; Sparavigna, A.; Wada, T.; Lucia, U. The κ-statistics approach to epidemiology. Sci. Rep.
**2020**, 10, 19949. [Google Scholar] [CrossRef] - Hristopulos, T.D.; Petrakis, M.; Kaniadakis, G. Finite-size effects on return interval distributions for weakest-link-scaling systems. Phys. Rev. E
**2014**, 89, 052142. [Google Scholar] [CrossRef] - Hristopulos, D.T.; Petrakis, M.P.; Kaniadakis, G. Weakest-link scaling and extreme events in finite-sized systems. Entropy
**2015**, 17, 1103–1122. [Google Scholar] [CrossRef] - Nerantzaki, S.D.; Papalexiou, S.M. Tails of extremes: Advancing a graphical method and harnessing big data to assess precipitation extremes. Adv. Water Resour.
**2019**, 134, 103448. [Google Scholar] [CrossRef] - Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.)
**1964**, 26, 211–243. [Google Scholar] [CrossRef] - Papoulis, A.; Pillai, S.U. Probability Random Variables and Stochastic Processes, 4th ed.; McGraw Hill: Boston, MA, USA, 2002. [Google Scholar]
- Anagnos, T.; Kiremidjian, A.S. A review of earthquake occurrence models for seismic hazard analysis. Probabilistic Eng. Mech.
**1988**, 3, 3–11. [Google Scholar] [CrossRef] - Kaniadakis, G. Theoretical foundations and mathematical formalism of the power-law tailed statistical distributions. Entropy
**2013**, 15, 3983–4010. [Google Scholar] [CrossRef] - Wackernagel, H. Multivariate Geostatistics; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Chilès, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Hristopulos, D.T. Random Fields for Spatial Data Modeling: A Primer for Scientists and Engineers; Springer: Dordrecht, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Yeo, I.K.; Johnson, R.A. A new family of power transformations to improve normality or symmetry. Biometrika
**2000**, 87, 954–959. [Google Scholar] [CrossRef] - Edwards, S.F.; Anderson, P.W. Theory of spin glasses. J. Phys. F Met. Phys.
**1975**, 5, 965–974. [Google Scholar] [CrossRef] - Hannachi, A. Intermittency, autoregression and censoring: A first-order AR model for daily precipitation. Meteorol. Appl.
**2014**, 21, 384–397. [Google Scholar] [CrossRef] - Hristopulos, D.T.; Uesaka, T. Structural disorder effects on the tensile strength distribution of heterogeneous brittle materials with emphasis on fiber networks. Phys. Rev. B
**2004**, 70, 064108. [Google Scholar] [CrossRef] - Rikitake, T. Recurrence of great earthquakes at subduction zones. Tectonophysics
**1976**, 35, 335–362. [Google Scholar] [CrossRef] - Rikitake, T. Assessment of earthquake hazard in the Tokyo area, Japan. Tectonophysics
**1991**, 199, 121–131. [Google Scholar] [CrossRef] - Sieh, K.; Stuiver, M.; Brillinger, D. A more precise chronology of earthquakes produced by the San Andreas fault in Southern California. J. Geophys. Res.
**1989**, 94, 603–623. [Google Scholar] [CrossRef] - Yakovlev, G.; Turcotte, D.L.; Rundle, J.B.; Rundle, P.B. Simulation-based distributions of earthquake recurrence times on the San Andreas fault system. Bull. Seismol. Soc. Am.
**2006**, 96, 1995–2007. [Google Scholar] [CrossRef] - Holliday, J.R.; Rundle, J.B.; Turcotte, D.L.; Klein, W.; Tiampo, K.F.; Donnellan, A. Space-Time clustering and correlations of major earthquakes. Phys. Rev. Lett.
**2006**, 97, 238501. [Google Scholar] [CrossRef] - Wilks, D.S. Rainfall intensity, the Weibull distribution, and estimation of daily surface runoff. J. Appl. Meteorol. Climatol.
**1989**, 28, 52–58. [Google Scholar] [CrossRef] - Selker, J.S.; Haith, D.A. Development and testing of single-parameter precipitation distributions. Water Resour. Res.
**1990**, 26, 2733–2740. [Google Scholar] [CrossRef] - Papalexiou, S.M.; AghaKouchak, A.; Foufoula-Georgiou, E. A diagnostic framework for understanding climatology of tails of hourly precipitation extremes in the United States. Water Resour. Res.
**2018**, 54, 6725–6738. [Google Scholar] [CrossRef] - Gumbel, E.J. Les valeurs extrêmes des distributions statistiques. Ann. De L’Institut Henri Poincaré
**1935**, 5, 115–158. [Google Scholar] - Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech.
**1951**, 18, 293–297. [Google Scholar] [CrossRef] - Chakrabarti, B.K.; Benguigui, L.G. Statistical Physics of Fracture and Breakdown in Disordered Systems; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Chambers, J.M.; Cleveland, W.S.; Kleiner, B.; Tukey, P.A. Graphical Methods for Data Analysis; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Nichols, M.D.; Padgett, W. A bootstrap control chart for Weibull percentiles. Qual. Reliab. Eng. Int.
**2006**, 22, 141–151. [Google Scholar] [CrossRef] - Aslam, M. Testing average wind speed using sampling plan for Weibull distribution under indeterminacy. Sci. Rep.
**2021**, 11, 7532. [Google Scholar] [CrossRef] - Krumbholz, M.; Hieronymus, C.F.; Burchardt, S.; Troll, V.R.; Tanner, D.C.; Friese, N. Weibull-distributed dyke thickness reflects probabilistic character of host-rock strength. Nat. Commun.
**2014**, 5, 3272. [Google Scholar] [CrossRef] - MatNavi Mechanical Properties of Low Alloy Steels. Available online: https://www.kaggle.com/datasets/rohannemade/mechanical-properties-of-low-alloy-steels (accessed on 8 June 2020).
- Mouslopoulou, V.; Bocchini, G.M.; Cesca, S.; Saltogianni, V.; Bedford, J.; Petersen, G.; Gianniou, M.; Oncken, O. Earthquake Swarms, Slow Slip and Fault Interactions at the Western-End of the Hellenic Subduction System Precede the Mw 6.9 Zakynthos Earthquake, Greece. Geochem. Geophys. Geosyst.
**2020**, 21, e2020GC009243. [Google Scholar] [CrossRef] - Mouslopoulou, V.; Bocchini, G.M.; Cesca, S.; Saltogianni, V.; Bedford, J.; Petersen, G.; Gianniou, M.; Oncken, O. Datasets for “Earthquake Swarms, Slow Slip and Fault Interactions at the Western-End of the Hellenic Subduction System Precede the Mw 6.9 Zakynthos Earthquake, Greece”. Zenodo
**2020**. [Google Scholar] [CrossRef] - Hristopulos, D. Matlab code for estimating the parameters of the kappa-Weibull distribution. Zenodo
**2022**. [Google Scholar] [CrossRef] - Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control
**1974**, 19, 716–723. [Google Scholar] [CrossRef] - Schwarz, G. Estimating the Dimension of a Model. Ann. Stat.
**1978**, 6, 461–464. [Google Scholar] [CrossRef] - Scheidegger, A.E. The Physics of Flow through Porous Media, 3rd ed.; University of Toronto Press: Toronto, ON, Canada, 1974. [Google Scholar]
- Torquato, S. Macroscopic behavior of random media from the microstructure. Appl. Mech. Rev.
**1994**, 47, S29–S37. [Google Scholar] [CrossRef] - Dagan, G. Stochastic modeling of flow and transport: The broad perspective. In Subsurface Flow and Transport: A Stochastic Approach; Dagan, G., Neuman, S.P., Eds.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties; Springer: New York, NY, USA, 2002. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M.; Pitaevskii, L.P. Electrodynamics of Continuous Media; Course on Theoretical Physics; Pergamon Press: Oxford, UK, 1984; Volume 8. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M. Lectures in Physics, Electromagnetism and Matter; The New Millenium Edition, Basic Books; Perseus Books Group: Ney York, NY, USA, 2010; Volume 2. [Google Scholar]
- Dykhne, A. Conductivity of a two-dimensional two-phase system. Sov. Phys. JETP
**1971**, 32, 63–65. [Google Scholar] - Papalexiou, S.M. Rainfall Generation Revisited: Introducing CoSMoS-2s and Advancing Copula-Based Intermittent Time Series Modeling. Water Resour. Res.
**2022**, 58, e2021WR031641. [Google Scholar] [CrossRef] - Lee, C.; Famoye, F.; Olumolade, O. Beta-Weibull distribution: Some properties and applications to censored data. J. Mod. Appl. Stat. Methods
**2007**, 6, 17. [Google Scholar] [CrossRef] - Alzaatreh, A.; Famoye, F.; Lee, C. Weibull-Pareto distribution and its applications. Commun. Stat. -Theory Methods
**2013**, 42, 1673–1691. [Google Scholar] [CrossRef] - Grooms, I. A comparison of nonlinear extensions to the ensemble Kalman filter. Comput. Geosci.
**2022**, 26, 633–650. [Google Scholar] [CrossRef]

**Figure 1.**Plots of the Box–Cox and $\kappa $-logarithmic transform for $\lambda =\kappa =1$ ($\lambda $ is the Box–Cox parameter and $\kappa $ is the deformation parameter of the Kaniadakis logarithm).

**Figure 2.**Plots of the Box–Cox (

**left**) and $\kappa $-logarithmic (

**right**) transform for different values of $\lambda =\kappa $ ($\lambda $ is the Box–Cox parameter and $\kappa $ is the deformation parameter of the Kaniadakis logarithm).

**Figure 3.**Realizations of six time series generated by the censored and transformed AR(1) model of Equation (24) with ${\varphi}_{1}=0.5$ and ${\sigma}_{\u03f5}=0.6$. The nonlinear transform uses BCT (blue, continuous lines) and KLT (red, broken lines) for $\kappa =\lambda \in \{0.001,0.2,0.4,0.6,0.8,0.95\}$.

**Figure 4.**Schematic illustrating how long tails can emerge if the observation window (blue square) is a nested insider a larger, interacting system (see text for explanation). Blue stars indicate events inside the observation window, while the red star refers to an event outside the window.

**Figure 5.**Survival functions for the Weibull and $\kappa $-Weibull distributions for different values of $\kappa $ and ${x}_{s}=m=1$.

**Figure 6.**Link survival function for different effective system sizes. The horizontal axis denotes the variable $z\left(x\right)={x}^{m}/{\tilde{x}}_{l}^{m}$. Larger values of ${N}_{\mathrm{eff}}$ correspond to slower decay of ${S}_{1}\left(x\right)$.

**Figure 7.**Plots of estimated ${\mathrm{\Phi}}_{\kappa}\left(x\right)$ obtained from $\kappa $-Weibull synthetically generated samples with different values of the Weibull modulus m and the deformation parameter $\kappa $.

**Figure 8.**Probability density functions resulting from the $\kappa $-logarithmic (

**left**) and Box–Cox (

**right**) transformations of the standard normal distribution, given by Equations (32) and (33) respectively. The curves correspond to different values of $\lambda =\kappa $ ($\lambda $ is the Box–Cox parameter and $\kappa $ is the deformation parameter of the Kaniadakis logarithm).

**Figure 9.**Parametric plots (versus x) of the $\kappa $-lognormal PDF defined in Equation (32) (

**top**) and the ratio function ${R}_{f}(x;\kappa )$ defined in Equation (34); the latter compares the tails of the $\kappa $-lognormal relative to the lognormal distribution for different values of the deformation parameter $\kappa $ (

**bottom**).

**Figure 10.**Parametric plots of the generalized mean versus $\kappa $ for different values of the averaging exponent $\alpha $ (

**left**) and the generalized mean versus $\alpha $ for different values of the deformation parameter $\kappa $ (

**right**).

**Table 1.**Results of maximum likelihood estimated fits to the Weibull and $\kappa $-Weibull distribution. 1. Tensile strength of carbon fibers. 2. Daily averaged wind speeds from 1 January 2009 to 4 October 2009 for Cairo, Egypt. 3–6. Thickness of magmatic sheet intrusions for different tectonic settings. 7. Tensile strength of low-alloy steels. 8. Recurrence times of aftershocks (A.R.T.) from 25 October 2018 until 31 May 2019, following the major M

_{w}6.9 Zakynthos earthquake (Greece). 9. Recurrence times of foreshocks (F.R.T.) preceding the Zakynthos earthquake (from 1 January 2014 until 25 October 2018). For more information regarding the data see the relevant sources. N, sample length; ${x}_{s}$, scale parameter; m, shape parameter; $\kappa $, Weibull deformation parameter. Values are rounded off to the second decimal digit. NLL, Negative log-likelihood.

Weibull | $\mathit{\kappa}$-Weibull | |||||||
---|---|---|---|---|---|---|---|---|

Data | $\mathit{N}$ | ${\mathit{x}}_{\mathit{s}}$ | $\mathit{m}$ | NLL | ${\mathit{x}}_{\mathit{s}}$ | $\mathit{m}$ | $\mathit{\kappa}$ | NLL |

1. C fibers (GPa) [69] | 100 | 2.94 | 2.79 | 141.53 | 2.90 | 2.98 | 0.285 | 141.23 |

2. Wind (mph) [70] | 100 | 8.05 | 2.78 | 240.21 | 7.63 | 3.28 | 0.56 | 239.32 |

3. Dyrfjöll (m) [71] | 487 | 0.90 | 1.26 | 378.05 | 0.84 | 1.46 | 0.42 | 368.40 |

4. Geitafell (m) [71] | 546 | 0.57 | 1.02 | 233.88 | 0.52 | 1.17 | 0.43 | 225.62 |

5. Tenerife (m) [71] | 550 | 1.83 | 1.02 | 875.18 | 1.65 | 1.18 | 0.45 | 867.38 |

6. La Palma (m) [71] | 2093 | 0.43 | 1.14 | 206.51 | 0.37 | 1.53 | 0.66 | 83.98 |

7. Steel (MPa) [72] | 915 | 548.58 | 1.98 | 6194.22 | 524.26 | 4.81 | 0.52 | 5753.13 |

8. A.R.T. (days) [74] | 7822 | 0.027 | 0.94 | −20207 | 0.024 | 1.19 | 0.49 | −20374 |

9. F.R.T. (days) [74] | 4731 | 0.28 | 0.68 | −692.60 | 0.27 | 0.70 | 0.17 | −698.37 |

**Table 2.**Measures of fit to the Weibull and $\kappa $-Weibull distributions for the datasets listed in Table 1. NLL, negative log-likelihood; AIC’, value of Akaike information criterion value per sample point, i.e., AIC’ = AIC/N = $2(k+\mathrm{NLL})/N$; BIC’, value of Bayesian information criterion per sample point, i.e., BIC’ = BIC/N = $(klogN+2\phantom{\rule{0.166667em}{0ex}}\mathrm{NLL})/N$.

Weibull | $\mathit{\kappa}$-Weibull | ||||||
---|---|---|---|---|---|---|---|

Data | $\mathit{N}$ | NLL | AIC’ | BIC’ | NLL | AIC’ | BIC’ |

1. C fibers (GPa) | 100 | 141.53 | 2.8706 | 2.9227 | 141.23 | 2.8846 | 2.9628 |

2. Wind (mph) | 100 | 240.21 | 4.8842 | 4.8963 | 239.32 | 4.8464 | 4.9246 |

3. Dyrfjöll (m) | 487 | 378.05 | 1.5608 | 1.5780 | 368.40 | 1.5253 | 1.5511 |

4. Geitafell (m) | 546 | 233.88 | 0.8640 | 0.8798 | 225.62 | 0.8374 | 0.8611 |

5. Tenerife (m) | 550 | 875.18 | 3.1897 | 3.2054 | 867.38 | 3.1650 | 3.1885 |

6. La Palma (m) | 2093 | 206.51 | 0.1992 | 0.2046 | 83.98 | 0.0831 | 0.0912 |

7. Steel (MPa) | 915 | 6194.22 | 13.5437 | 13.5542 | 5753.13 | 12.5817 | 12.5975 |

8. A.R.T. (days) | 7822 | −20207 | −5.1662 | −5.1644 | −20374 | −5.2086 | −5.2060 |

9. F.R.T. (days) | 4731 | −692.60 | −0.2919 | −0.2892 | −692.60 | −0.2940 | −0.2899 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hristopulos, D.T.; Baxevani, A.
Kaniadakis Functions beyond Statistical Mechanics: Weakest-Link Scaling, Power-Law Tails, and Modified Lognormal Distribution. *Entropy* **2022**, *24*, 1362.
https://doi.org/10.3390/e24101362

**AMA Style**

Hristopulos DT, Baxevani A.
Kaniadakis Functions beyond Statistical Mechanics: Weakest-Link Scaling, Power-Law Tails, and Modified Lognormal Distribution. *Entropy*. 2022; 24(10):1362.
https://doi.org/10.3390/e24101362

**Chicago/Turabian Style**

Hristopulos, Dionissios T., and Anastassia Baxevani.
2022. "Kaniadakis Functions beyond Statistical Mechanics: Weakest-Link Scaling, Power-Law Tails, and Modified Lognormal Distribution" *Entropy* 24, no. 10: 1362.
https://doi.org/10.3390/e24101362