Gait Stability Measurement by Using Average Entropy
Abstract
1. Introduction
2. Materials
3. Methods
3.1. Entropy of Entropy (EoE) and Average Entropy (AE) Analyses
3.2. ESample Entropy (SE), Fuzzy Entropy (FE), Dispersion Entropy (DE), Fluctuation-Based Dispersion Entropy (FDE), and Distribution Entropy (DistE) Analyses
3.3. The Performance Indices
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heinrich, S.; Rapp, K.; Rissmann, U.; Becker, C.; König, H.H. Cost of falls in old age: A systematic review. Osteoporos. Int. 2010, 21, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Decker, L.M.; Cignetti, F.; Stergiou, N. Complexity and Human Gait. Revista Andaluza Medicina Deporte 2010, 3, 2–12. [Google Scholar]
- Ducharme, S.W.; Liddy, J.J.; Haddad, J.M.; Busa, M.A.; Claxton, L.J.; van Emmerik, R.E.A. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking. Hum. Mov. Sci. 2018, 58, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Lake, D.E.; Richman, J.S.; Pamela Griffin, M.; Randall Moorman, J. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2002, 283, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Azami, H.; Li, P.; Arnold, S.E.; Escudero, J.; Humeau-Heurtier, A. Fuzzy entropy metrics for the analysis of biomedical signals: Assessment and comparison. IEEE Access 2019, 7, 104833–104847. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Li, K.; Zheng, D.; Liu, C.; Hou, Y. Assessing the complexity of short-term heartbeat interval series by distribution entropy. Med. Biol. Eng. Comput. 2015, 53, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Rostaghi, M.; Azami, H. Dispersion Entropy: A Measure for Time-Series Analysis. IEEE Signal Process. Lett. 2016, 23, 610–614. [Google Scholar] [CrossRef]
- Azami, H.; Escudero, J. Amplitude- and fluctuation-based dispersion entropy. Entropy 2018, 20, 210. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Zemany, L.; Peng, C.K.; Goldberger, A.L. Maturation of gait dynamics: Stride-to-stride variability and its temporal organization in children. J. Appl. Physiol. 1999, 86, 1040–1047. [Google Scholar] [CrossRef]
- Iyengar, N.; Peng, C.K.; Morin, R.; Goldberger, A.L.; Lipsitz, L.A. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1996, 271, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Alcan, V. Nonlinear Analysis of Stride Interval Time Series in Gait Maturation Using Distribution Entropy. IRBM 2021. [Google Scholar] [CrossRef]
- Azami, H.; Fernández, A.; Escudero, J. Multivariate multiscale dispersion entropy of biomedical times series. Entropy 2017, 21, 913. [Google Scholar] [CrossRef]
- Azami, H.; Arnold, S.E.; Sanei, S.; Chang, Z.; Sapiro, G.; Escudero, J.; Gupta, A.S. Multiscale fluctuation-based dispersion entropy and its applications to neurological diseases. IEEE Access 2019, 7, 68718–68733. [Google Scholar] [CrossRef]
- Azami, H.; Fernández, A.; Escudero, J. Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis. Med. Biol. Eng. Comput. 2017, 55, 2037–2052. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef]
- Hsu, C.; Wei, S.-Y.; Huang, H.-P.; Hsu, L.; Chi, S.; Peng, C.-K. Entropy of Entropy: Measurement of Dynamical Complexity for Biological Systems. Entropy 2017, 19, 550. [Google Scholar] [CrossRef]
- Hsu, C.F.; Lin, P.Y.; Chao, H.H.; Hsu, L.; Chi, S. Average Entropy: Measurement of disorder for cardiac RR interval signA. Phys. A Stat. Mech. Its Appl. 2019, 529, 1–21. [Google Scholar] [CrossRef]
- Mitchell, M. Complexity: A Guided Tour; Oxford University Press: Oxford, UK, 2009; ISBN 0199724571/9780199724574. [Google Scholar]
- Gell-Mann, M. What is complexity? Complexity 1995, 1, 16–19. [Google Scholar] [CrossRef]
- Huberman, B.A.; Hogg, T. Complexity and Adaptation. Phys. D Nonlinear Phenom. 1986, 22, 376–384. [Google Scholar] [CrossRef]
- Zhang, Y.-C. Complexity and 1/f noise. A phase space approach. J. Phys. I Fr. 1991, 1, 971–977. [Google Scholar] [CrossRef]
- Saito, T.S.T.; Agu, M.A.M.; Yamada, M. A Measure of Complexity for 1/f Fluctuation. Jpn. J. Appl. Phys. 1999, 38, L596. [Google Scholar] [CrossRef]
- Wei, S.Y.; Hsu, C.F.; Lee, Y.J.; Hsu, L.; Chi, S. The static standing postural stability measured by average entropy. Entropy 2019, 21, 1210. [Google Scholar] [CrossRef]
- Zijlstra, W.; Hof, A.L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003, 18, 1–10. [Google Scholar] [CrossRef]
- Hartmann, A.; Luzi, S.; Murer, K.; de Bie, R.A.; de Bruin, E.D. Concurrent validity of a trunk tri-axial accelerometer system for gait analysis in older adults. Gait Posture 2009, 29, 444–448. [Google Scholar] [CrossRef]
- Sun, Y.; Hare, J.S.; Nixon, M.S. Detecting heel strikes for gait analysis through acceleration flow. IET Comput. Vis. 2018, 12, 686–692. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2003, 101, E215–E220. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Lertratanakul, A.; Cudkowicz, M.E.; Peterson, A.L.; Kaliton, D.; Goldberger, A.L. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J. Appl. Physiol. 2000, 88, 2045–2053. [Google Scholar] [CrossRef] [PubMed]
- Mayor, D.; Panday, D.; Kandel, H.K.; Steffert, T.; Banks, D. CEPS: An Open Access MATLAB Graphical User Interface (GUI) for the Analysis of Complexity and Entropy in Physiological Signals. Entropy 2021, 23, 321. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, 2039–2049. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Pretz, C. Minimum Sample Sizes for Conducting Two-Group Discriminant Analysis. Ph.D. Thesis, University of Northern Colorado, Greeley, CO, USA, 2003. [Google Scholar]
- Hsu, C.F.; Hsu, L.; Chi, S. Complexity and Disorder of 1/f α Noises. Entropy 2020, 22, 1127. [Google Scholar] [CrossRef] [PubMed]
Performance | Mean | SD | AE | DistE | SE P1D/P2I | FE P1D/P2I | DE P1D/P2I | FDE P1D/P2I |
---|---|---|---|---|---|---|---|---|
AccD1 | 50% | 80% | 100% | 80% | 70%/90% | 50%/60% | 60%/80% | 50%/60% |
RecallD2(SN vs. PD) | 0.6 | 0.6 | 1 | 0.4 | 0.4/0.6 | 0.8/0.6 | 0.8 R/1 R | 0.6/1 R |
PrecisionD2(SN vs. PD) | 0.75 | 1 | 0.83 | 0.5 | 0.33/1 | 0.67/0.6 | 0.8 R/1 R | 0.6/1 R |
FD2(SN vs. PD) | 0.67 | 0.75 | 0.91 | 0.44 | 0.36/0.75 | 0.73/0.6 | 0.8 R/1 R | 0.6/1 R |
RecallD3(H vs. HT) | 0.65 | 0.75 | 0.8 | 0.8 | 0.7/0.7 | 0.75/0.65 | 0.2 R/0.6 R | 0.75/0.65 R |
PrecisionD3(H vs. HT) | 0.87 | 0.94 | 0.94 | 0.89 | 0.67/0.74 | 0.68/0.62 | 1 R/0.92 R | 0.63/0.93 R |
FD3(H vs. HT) | 0.74 | 0.83 | 0.86 | 0.84 | 0.68/0.72 | 0.71/0.63 | 0.33 R/0.73 R | 0.68/0.76 R |
RecallD3(H vs. PD) | 0.13 | 0.47 | 0.87 | 0.67 | 0.53/0.53 | 0.53/0.6 | 0.53/0.33 R | 0.6/0.33 R |
PrecisionD3(H vs. PD) | 0.29 | 0.88 | 0.87 | 0.83 | 0.57/0.62 | 0.8/0.6 | 0.62/0.45 R | 0.82/0.56 R |
FD3(H vs. PD) | 0.18 | 0.61 | 0.87 | 0.74 | 0.55/0.57 | 0.64/0.6 | 0.57/0.38 R | 0.69/0.42 R |
RecallD3(H vs. ALS) | 0.23 | 0.46 | 0.69 | 0.62 | 0.08/0 | 0.31/0.38 | 0.31 R/0.38 R | 0/0.38 R |
PrecisionD3(H vs. ALS) | 0.75 | 0.86 | 0.9 | 0.8 | 0.17/0 | 0.4/0.83 | 0.36 R/0.63 R | 0/0.63 R |
FD3(H vs. ALS) | 0.35 | 0.6 | 0.78 | 0.7 | 0.11/NaN ab | 0.35/0.53 | 0.33 R/0.48 R | NaN ab/0.48 R |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-P.; Hsu, C.F.; Mao, Y.-C.; Hsu, L.; Chi, S. Gait Stability Measurement by Using Average Entropy. Entropy 2021, 23, 412. https://doi.org/10.3390/e23040412
Huang H-P, Hsu CF, Mao Y-C, Hsu L, Chi S. Gait Stability Measurement by Using Average Entropy. Entropy. 2021; 23(4):412. https://doi.org/10.3390/e23040412
Chicago/Turabian StyleHuang, Han-Ping, Chang Francis Hsu, Yi-Chih Mao, Long Hsu, and Sien Chi. 2021. "Gait Stability Measurement by Using Average Entropy" Entropy 23, no. 4: 412. https://doi.org/10.3390/e23040412
APA StyleHuang, H.-P., Hsu, C. F., Mao, Y.-C., Hsu, L., & Chi, S. (2021). Gait Stability Measurement by Using Average Entropy. Entropy, 23(4), 412. https://doi.org/10.3390/e23040412