# What Is Temperature? Modern Outlook on the Concept of Temperature

## Abstract

**:**

## 1. Introduction

## 2. Results and Discussion

#### 2.1. Temperature as an Average of the Kinetic Energy and the Metrics of Configurational Space

#### 2.2. Temperature, Energy, and Entropy: An Alternative Glance on the Temperature

#### 2.3. Entropy Forces and Fundamental Role of Temperature

#### 2.4. The Landauer Principle and Informational Interpretation of the Temperature

#### 2.5. Fundamental Role of the Cosmic Background Temperature

#### 2.6. Boltzmann and Gibbs Temperatures: Is a Negative Absolute Temperature Possible?

## 3. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Carus, T.L. De Rerum Natura; Rizzoli: Milano, Italy, 1976. [Google Scholar]
- Chang, H. Inventing Temperature. Measurement and Scientific Progress; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Schroeder, D.V. Thermal Physics; Addison Wesley Longman: San Francisco, CA, USA, 2000. [Google Scholar]
- Cropper, W.H. Carnot’s function: Origins of the thermodynamic concept of temperature. Am. J. Phys.
**1987**, 55, 120. [Google Scholar] [CrossRef] - Erlichson, H. Kelvin and the absolute temperature scale. Eur. J. Phys.
**2001**, 22, 325–328. [Google Scholar] - Sivukhin, D. General Physics Course; Fizmatlit: Moscow, Russia, 2005; Volume 2. (In Russian) [Google Scholar]
- Bormashenko, E.; Shkorbatov, A.; Gendelman, O. The Carnot engine based on the small thermodynamic system: Its efficiency and the ergodic hypothesis. Am. J. Phys.
**2007**, 75, 911–915. [Google Scholar] [CrossRef] - Bender, C.M.; Brody, D.C.; Meister, B.K. Quantum mechanical Carnot engine. J. Phys. A Math. Gen.
**2000**, 33, 4427–4436. [Google Scholar] [CrossRef] [Green Version] - Tolman, R.C. Relativity, Thermodynamics and Cosmology; Oxford University Press: Oxford, UK, 1934. [Google Scholar]
- Ott, H. Lorentz-Transformation der Wärme und der Temperatur. Z. Phys.
**1963**, 175, 70–104. [Google Scholar] [CrossRef] - Landsberg, P.T.; Matsas, G.E.A. Laying the ghost of the relativistic temperature transformation. Phys. Lett. A
**1996**, 223, 401–403. [Google Scholar] [CrossRef] [Green Version] - Landsberg, P.; Matsas, G.E.A. The impossibility of a universal relativistic temperature transformation. Phys. A Stat. Mech. Appl.
**2004**, 340, 92–94. [Google Scholar] [CrossRef] - Bormashenko, E. Entropy of Relativistic Mono-Atomic Gas and Temperature Relativistic Transformation in Thermodynamics. Entropy
**2007**, 9, 113–117. [Google Scholar] [CrossRef] [Green Version] - Reif, F. Statistical Physics, Berkley Physics Course, V. 5; McGraw Hill: New York, NY, USA, 1967. [Google Scholar]
- Lanczos, C. The Variational Principles of Mechanics; University of Toronto Press: Toronto, ON, Canada, 1962. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, 3rd ed.; Course of Theoretical Physics; Elsevier: Oxford, UK, 2011; Volume 5. [Google Scholar]
- Walters, P. An Introduction to Ergodic Theory; Springer: Berlin, Germany, 1982. [Google Scholar]
- Kittel, C.H. Thermal Physics; John and Wiley & Sons: New York, NY, USA, 1969. [Google Scholar]
- Baierlein, R. Thermal Physics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Bormashenko, E. Entropy, Information, and Symmetry; Ordered Is Symmetrical, II: System of Spins in the Magnetic Field. Entropy
**2020**, 22, 235. [Google Scholar] [CrossRef] [Green Version] - Riek, R. A Derivation of a Microscopic Entropy and Time Irreversibility from the Discreteness of Time. Entropy
**2014**, 16, 3149–3172. [Google Scholar] [CrossRef] [Green Version] - Riek, R. Entropy is a consequence of a discrete time. J. Phys. Conf. Ser.
**2015**, 626, 12025. [Google Scholar] [CrossRef] [Green Version] - Pohl, R.W. Mechanik, Akustik and Wärmelehre; Springer: Berlin, Germany, 2013. [Google Scholar]
- Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Verlinde, E.P. On the origin of gravity and the laws of Newton. J. High Energy Phys.
**2011**, 2011, 1–27. [Google Scholar] [CrossRef] [Green Version] - Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev.
**1961**, 5, 183–191. [Google Scholar] [CrossRef] - Landauer, R. Information is Physical. Phys. Today
**1991**, 44, 23–29. [Google Scholar] [CrossRef] - Landauer, R. Minimal Energy Requirements in Communication. Science
**1996**, 272, 1914–1918. [Google Scholar] [CrossRef] [PubMed] - Norton, J.D. Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Stud. Hist. Philos. Sci. B
**2005**, 36, 375–411. [Google Scholar] [CrossRef] [Green Version] - Norton, J.D. Waiting for Landauer. Stud. Hist. Philos. Sci. Part B
**2011**, 42, 184–198. [Google Scholar] [CrossRef] [Green Version] - Herrera, L. The Mass of A Bit of Information and The Brillouin’s Principle. Fluct. Noise Lett.
**2014**, 13, 1450002. [Google Scholar] [CrossRef] [Green Version] - Herrera, L. The Gibbs Paradox, the Landauer Principle and the Irreversibility Associated with Tilted Observers. Entropy
**2017**, 19, 110. [Google Scholar] [CrossRef] [Green Version] - Herrera, L. Landauer Principle and General Relativity. Entropy
**2020**, 22, 340. [Google Scholar] [CrossRef] [Green Version] - Vopson, M.M. The mass-energy-information equivalence principle. AIP Adv.
**2019**, 9, 95206. [Google Scholar] [CrossRef] - Müller, J.G. Information Contained in Molecular Motion. Entropy
**2019**, 21, 1052. [Google Scholar] [CrossRef] [Green Version] - Müller, J.G. Photon Detection as a Process of Information Gain. Entropy
**2020**, 22, 392. [Google Scholar] [CrossRef] [Green Version] - Sagawa, T.; Ueda, M. Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure. Phys. Rev. Lett.
**2009**, 102, 250602. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys.
**2015**, 11, 131–139. [Google Scholar] [CrossRef] - Aydin, A.; Sisman, A.; Kosloff, R. Landauer’s Principle in a quantum Szilard engine without Maxwell’s Demon. Entropy
**2020**, 22, 294. [Google Scholar] [CrossRef] [Green Version] - Wheeler, J.A. Information, physics, quantum: The search for links. In Proceedings of the III International Symposium on Foundations of Quantum Mechanics, Tokyo, Japan, 28–31 August 1989. [Google Scholar]
- Knuth, K.H. Information-Based Physics and the Influence Network. In It from Bit or Bit from It? The Frontiers Collection; Aguirre, A., Foster, B., Merali, Z., Eds.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Knuth, K.H.; Walsh, J.L. An Introduction to Influence Theory: Kinematics and Dynamics. Ann. Phys.
**2018**, 531, 1800091. [Google Scholar] [CrossRef] - Caticha, A. Entropic Dynamics. Entropy
**2015**, 17, 6110–6128. [Google Scholar] [CrossRef] [Green Version] - Bormashenko, E. Informational Reinterpretation of the Mechanics Notions and Laws. Entropy
**2020**, 22, 631. [Google Scholar] [CrossRef] - Szilard, L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys.
**1929**, 53, 840–856. (In German) [Google Scholar] [CrossRef] - Bormashenko, E. The Landauer Principle: Re-Formulation of the Second Thermodynamics Law or a Step to Great Unification? Entropy
**2019**, 21, 918. [Google Scholar] [CrossRef] [Green Version] - Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D
**1976**, 14, 870–892. [Google Scholar] [CrossRef] [Green Version] - Hooft, H. Holographic Principle. In The Subnuclear Series, Basics and Highlights in Fundamental Physics; Zichichi, A., Ed.; World Scientific: Singapore, 2001; Volume 37, pp. 72–100. [Google Scholar]
- Bousso, R. The holographic principle. Rev. Mod. Phys.
**2002**, 74, 825–874. [Google Scholar] [CrossRef] [Green Version] - Ćirković, M.M.; Perović, S. Alternative explanations of the cosmic microwave background: A historical and an epistemological perspective. Stud. Hist. Philos. Sci. Part B
**2018**, 62, 1–18. [Google Scholar] [CrossRef] [Green Version] - Peebles, P.J.E.; Page, L.A., Jr.; Partridge, R.B. Finding the Big Bang; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Copi, C.; Schramm, D.; Turner, M. Big-bang nucleosynthesis and the baryon density of the universe. Science
**1995**, 267, 192–199. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Schramm, D.N.; Turner, M.S. Big-bang nucleosynthesis enters the precision era. Rev. Mod. Phys.
**1998**, 70, 303–318. [Google Scholar] [CrossRef] [Green Version] - Purcell, E.M.; Pound, R.V. A Nuclear Spin System at Negative Temperature. Phys. Rev.
**1951**, 81, 279–280. [Google Scholar] [CrossRef] - Dunkel, J.; Hilbert, S. Consistent thermostatistics forbids negative absolute temperatures. Nat. Phys.
**2013**, 10, 67–72. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Origin of the inertia entropic force is illustrated [25]. A particle with mass m approaches a holographic screen possessing temperature T. $\mathsf{\Delta}S$ is the entropy change near the screen.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bormashenko, E.
What Is Temperature? Modern Outlook on the Concept of Temperature. *Entropy* **2020**, *22*, 1366.
https://doi.org/10.3390/e22121366

**AMA Style**

Bormashenko E.
What Is Temperature? Modern Outlook on the Concept of Temperature. *Entropy*. 2020; 22(12):1366.
https://doi.org/10.3390/e22121366

**Chicago/Turabian Style**

Bormashenko, Edward.
2020. "What Is Temperature? Modern Outlook on the Concept of Temperature" *Entropy* 22, no. 12: 1366.
https://doi.org/10.3390/e22121366