Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths
Abstract
1. Introduction
2. Model
Minimality of the Model
3. Methods
4. Local Current Modes
5. Ergotropy
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Segal, D.; Nitzan, A. Spin-Boson Thermal Rectifier. Phys. Rev. Lett. 2005, 94, 034301. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Okawa, D.; Majumdar, A.; Zettl, A. Solid-State Thermal Rectifier. Science 2006, 314, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, W.; Teraoka, Y.; Terasaki, I. An Oxide Thermal Rectifier. Appl. Phys. Lett. 2009, 95, 171905. [Google Scholar] [CrossRef]
- Arrachea, L.; Lozano, G.S.; Aligia, A.A. Thermal Transport in One-Dimensional Spin Heterostructures. Phys. Rev. B 2009, 80, 014425. [Google Scholar] [CrossRef]
- Wu, L.A.; Segal, D. Sufficient Conditions for Thermal Rectification in Hybrid Quantum Structures. Phys. Rev. Lett. 2009, 102, 095503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yan, Y.; Wu, C.Q.; Wang, J.S.; Li, B. Reversal of Thermal Rectification in Quantum Systems. Phys. Rev. B 2009, 80, 172301. [Google Scholar] [CrossRef]
- Yan, Y.; Wu, C.Q.; Li, B. Control of Heat Transport in Quantum Spin Systems. Phys. Rev. B 2009, 79, 014207. [Google Scholar] [CrossRef]
- Werlang, T.; Marchiori, M.A.; Cornelio, M.F.; Valente, D. Optimal Rectification in the Ultrastrong Coupling Regime. Phys. Rev. E 2014, 89, 062109. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pérez, M.J.; Fornieri, A.; Giazotto, F. Rectification of Electronic Heat Current by a Hybrid Thermal Diode. Nat. Nanotechnol. 2015, 10, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, V.; Clark, S.R.; Goold, J.; Poletti, D. Heat Current Rectification and Mobility Edges. arXiv, 2018; arXiv:1809.10640. [Google Scholar]
- Balachandran, V.; Benenti, G.; Pereira, E.; Casati, G.; Poletti, D. Perfect Diode in Quantum Spin Chains. Phys. Rev. Lett. 2018, 120, 200603. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, V.; Benenti, G.; Pereira, E.; Casati, G.; Poletti, D. Heat Current Rectification in Segmented XXZ Chains. arXiv, 2018; arXiv:1809.01917. [Google Scholar]
- Motz, T.; Wiedmann, M.; Stockburger, J.T.; Ankerhold, J. Rectification of Heat Currents across Nonlinear Quantum Chains: A Versatile Approach beyond Weak Thermal Contact. New J. Phys. 2018, 20, 113020. [Google Scholar] [CrossRef]
- Joulain, K.; Drevillon, J.; Ezzahri, Y.; Ordonez-Miranda, J. Quantum Thermal Transistor. Phys. Rev. Lett. 2016, 116, 200601. [Google Scholar] [CrossRef] [PubMed]
- Kosloff, R.; Levy, A. Quantum Heat Engines and Refrigerators: Continuous Devices. Annu. Rev. Phys. Chem. 2014, 65, 365–393. [Google Scholar] [CrossRef] [PubMed]
- Uzdin, R.; Levy, A.; Kosloff, R. Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures. Phys. Rev. X 2015, 5, 031044. [Google Scholar] [CrossRef]
- Gelbwaser-Klimovsky, D.; Niedenzu, W.; Kurizki, G. Thermodynamics of Quantum Systems Under Dynamical Control. Adv. At. Mol. Opt. Phys. 2015, 64, 329–407. [Google Scholar]
- Altintas, F.; Hardal, A.U.C.; Müstecaplıoğlu, O.E. Rabi Model as a Quantum Coherent Heat Engine: From Quantum Biology to Superconducting Circuits. Phys. Rev. A 2015, 91, 023816. [Google Scholar] [CrossRef]
- Benenti, G.; Casati, G.; Saito, K.; Whitney, R.S. Fundamental Aspects of Steady-State Conversion of Heat to Work at the Nanoscale. Phys. Rep. 2017, 694, 1–124. [Google Scholar] [CrossRef]
- Bissbort, U.; Teo, C.; Guo, C.; Casati, G.; Benenti, G.; Poletti, D. Minimal Motor for Powering Particle Motion from Spin Imbalance. Phys. Rev. E 2017, 95, 062143. [Google Scholar] [CrossRef] [PubMed]
- Seah, S.; Nimmrichter, S.; Scarani, V. Work Production of Quantum Rotor Engines. New J. Phys. 2018, 20, 043045. [Google Scholar] [CrossRef]
- Roulet, A.; Nimmrichter, S.; Taylor, J.M. An Autonomous Single-Piston Engine with a Quantum Rotor. Quantum Sci. Technol. 2018, 3, 035008. [Google Scholar] [CrossRef]
- Hovhannisyan, K.V.; Imparato, A. Defining and Generating Current in Open Quantum Systems. arXiv, 2018; arXiv:1806.08779. [Google Scholar]
- Blickle, V.; Bechinger, C. Realization of a Micrometre-Sized Stochastic Heat Engine. Nat. Phys. 2012, 8, 143–146. [Google Scholar] [CrossRef]
- Martínez, I.A.; Roldán, E.; Dinis, L.; Petrov, D.; Parrondo, J.M.R.; Rica, R.A. Brownian Carnot Engine. Nat. Phys. 2016, 12, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Serra-Garcia, M.; Foehr, A.; Molerón, M.; Lydon, J.; Chong, C.; Daraio, C. Mechanical Autonomous Stochastic Heat Engine. Phys. Rev. Lett. 2016, 117, 010602. [Google Scholar] [CrossRef] [PubMed]
- Roßnagel, J.; Dawkins, S.T.; Tolazzi, K.N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. A Single-Atom Heat Engine. Science 2016, 352, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Klatzow, J.; Becker, J.N.; Ledingham, P.M.; Weinzetl, C.; Kaczmarek, K.T.; Saunders, D.J.; Nunn, J.; Walmsley, I.A.; Uzdin, R.; Poem, E. Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines. arXiv, 2017; arXiv:1710.08716. [Google Scholar]
- Van Horne, N.; Yum, D.; Dutta, T.; Hänggi, P.; Gong, J.; Poletti, D.; Mukherjee, M. Single Atom Energy-Conversion Device with a Quantum Load. arXiv, 2018; arXiv:1812.01303. [Google Scholar]
- von Lindenfels, D.; Gräb, O.; Schmiegelow, C.T.; Kaushal, V.; Schulz, J.; Schmidt-Kaler, F.; Poschinger, U.G. A Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel. arXiv, 2018; arXiv:1808.02390. [Google Scholar]
- Peterson, J.P.S.; Batalhão, T.B.; Herrera, M.; Souza, A.M.; Sarthour, R.S.; Oliveira, I.S.; Serra, R.M. Experimental Characterization of a Spin Quantum Heat Engine. arXiv, 2018; arXiv:1803.06021. [Google Scholar]
- Levy, A.; Kosloff, R. Quantum Absorption Refrigerator. Phys. Rev. Lett. 2012, 108, 070604. [Google Scholar] [CrossRef] [PubMed]
- Linden, N.; Popescu, S.; Skrzypczyk, P. How Small Can Thermal Machines Be? The Smallest Possible Refrigerator. Phys. Rev. Lett. 2010, 105, 130401. [Google Scholar] [CrossRef] [PubMed]
- Mitchison, M.T.; Huber, M.; Prior, J.; Woods, M.P.; Plenio, M.B. Realising a Quantum Absorption Refrigerator with an Atom-Cavity System. Quantum Sci. Technol. 2016, 1, 015001. [Google Scholar] [CrossRef]
- Maslennikov, G.; Ding, S.; Hablutzel, R.; Gan, J.; Roulet, A.; Nimmrichter, S.; Dai, J.; Scarani, V.; Matsukevich, D. Quantum Absorption Refrigerator with Trapped Ions. arXiv, 2017; arXiv:1702.08672. [Google Scholar]
- Mu, A.; Agarwalla, B.K.; Schaller, G.; Segal, D. Qubit Absorption Refrigerator at Strong Coupling. New J. Phys. 2017, 19, 123034. [Google Scholar] [CrossRef]
- Seah, S.; Nimmrichter, S.; Scarani, V. Refrigeration beyond Weak Internal Coupling. Phys. Rev. E 2018, 98, 012131. [Google Scholar] [CrossRef] [PubMed]
- Campaioli, F.; Pollock, F.A.; Binder, F.C.; Céleri, L.; Goold, J.; Vinjanampathy, S.; Modi, K. Enhancing the Charging Power of Quantum Batteries. Phys. Rev. Lett. 2017, 118, 150601. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, D.; Campisi, M.; Andolina, G.M.; Pellegrini, V.; Polini, M. High-Power Collective Charging of a Solid-State Quantum Battery. Phys. Rev. Lett. 2018, 120, 117702. [Google Scholar] [CrossRef] [PubMed]
- Andolina, G.M.; Farina, D.; Mari, A.; Pellegrini, V.; Giovannetti, V.; Polini, M. Charger-Mediated Energy Transfer in Exactly Solvable Models for Quantum Batteries. Phys. Rev. B 2018, 98, 205423. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Maximal Work Extraction from Finite Quantum Systems. Europhys. Lett. 2004, 67, 565. [Google Scholar] [CrossRef]
- Redfield, A.G. On the Theory of Relaxation Processes. IBM J. Res. Dev. 1957, 1, 19–31. [Google Scholar] [CrossRef]
- Fleming, C.H.; Cummings, N.I. Accuracy of Perturbative Master Equations. Phys. Rev. E 2011, 83, 031117. [Google Scholar] [CrossRef] [PubMed]
- Thingna, J.; Wang, J.S.; Hänggi, P. Generalized Gibbs State with Modified Redfield Solution: Exact Agreement up to Second Order. J. Chem. Phys. 2012, 136, 194110. [Google Scholar] [CrossRef] [PubMed]
- Thingna, J.; Wang, J.S.; Hänggi, P. Reduced Density Matrix for Nonequilibrium Steady States: A Modified Redfield Solution Approach. Phys. Rev. E 2013, 88, 052127. [Google Scholar] [CrossRef] [PubMed]
- Purkayastha, A.; Dhar, A.; Kulkarni, M. Out-of-Equilibrium Open Quantum Systems: A Comparison of Approximate Quantum Master Equation Approaches with Exact Results. Phys. Rev. A 2016, 93, 062114. [Google Scholar] [CrossRef]
- Wichterich, H.; Henrich, M.J.; Breuer, H.P.; Gemmer, J.; Michel, M. Modeling Heat Transport through Completely Positive Maps. Phys. Rev. E 2007, 76, 031115. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Thingna, J.; Wang, J.S. Finite Coupling Effects in Double Quantum Dots near Equilibrium. Phys. Rev. B 2017, 95, 035428. [Google Scholar] [CrossRef]
- Rivas, A.; Martin-Delgado, M.A. Topological Heat Transport and Symmetry-Protected Boson Currents. Sci. Rep. 2017, 7, 6350. [Google Scholar] [CrossRef] [PubMed]
- Ishizaki, A.; Fleming, G.R. On the Adequacy of the Redfield Equation and Related Approaches to the Study of Quantum Dynamics in Electronic Energy Transfer. J. Chem. Phys. 2009, 130, 234110. [Google Scholar] [CrossRef] [PubMed]
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely Positive Dynamical Semigroups of N-level Systems. J. Math. Phys. 1976, 17, 821–825. [Google Scholar] [CrossRef]
- Lindblad, G. On the Generators of Quantum Dynamical Semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Kołodyński, J.; Brask, J.B.; Perarnau-Llobet, M.; Bylicka, B. Adding Dynamical Generators in Quantum Master Equations. Phys. Rev. A 2018, 97, 062124. [Google Scholar] [CrossRef]
- Xu, X.; Thingna, J.; Guo, C.; Poletti, D. Many-Body Open Quantum Systems beyond Lindblad Master Equations. Phys. Rev. A 2019, 99, 012106. [Google Scholar] [CrossRef]
- Levy, A.; Kosloff, R. The Local Approach to Quantum Transport May Violate the Second Law of Thermodynamics. Europhys. Lett. 2014, 107, 20004. [Google Scholar] [CrossRef]
- Blum, K. Density Matrix Theory and Applications, 3nd ed.; Springer Series on Atomic, Optical, and Plasma Physics; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Pusz, W.; Woronowicz, S.L. Passive States and KMS States for General Quantum Systems. Commun. Math. Phys. 1978, 58, 273–290. [Google Scholar] [CrossRef]
- Porras, D.; Cirac, J.I. Effective Quantum Spin Systems with Trapped Ions. Phys. Rev. Lett. 2004, 92, 207901. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, A.; Schaetz, T.; Porras, D. Synthetic Gauge Fields for Vibrational Excitations of Trapped Ions. Phys. Rev. Lett. 2011, 107, 150501. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, A.; Bruderer, M.; Plenio, M.B. Controlling and Measuring Quantum Transport of Heat in Trapped-Ion Crystals. Phys. Rev. Lett. 2013, 111, 040601. [Google Scholar] [CrossRef] [PubMed]
- Rogge, M.C.; Haug, R.J. Two-Path Transport Measurements on a Triple Quantum Dot. Phys. Rev. B 2008, 77, 193306. [Google Scholar] [CrossRef]
- Thalineau, R.; Hermelin, S.; Wieck, A.D.; Bäuerle, C.; Saminadayar, L.; Meunier, T. A Few-Electron Quadruple Quantum Dot in a Closed Loop. Appl. Phys. Lett. 2012, 101, 103102. [Google Scholar] [CrossRef]
- Seo, M.; Choi, H.K.; Lee, S.Y.; Kim, N.; Chung, Y.; Sim, H.S.; Umansky, V.; Mahalu, D. Charge Frustration in a Triangular Triple Quantum Dot. Phys. Rev. Lett. 2013, 110, 046803. [Google Scholar] [CrossRef] [PubMed]
- Vogl, M.; Schaller, G.; Brandes, T. Criticality in Transport through the Quantum Ising Chain. Phys. Rev. Lett. 2012, 109, 240402. [Google Scholar] [CrossRef] [PubMed]
- Schaller, G.; Vogl, M.; Brandes, T. Transport as a Sensitive Indicator of Quantum Criticality. J. Phys. Condens. Matter 2014, 26, 265001. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Choo, K.; Balachandran, V.; Poletti, D. Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths. Entropy 2019, 21, 228. https://doi.org/10.3390/e21030228
Xu X, Choo K, Balachandran V, Poletti D. Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths. Entropy. 2019; 21(3):228. https://doi.org/10.3390/e21030228
Chicago/Turabian StyleXu, Xiansong, Kenny Choo, Vinitha Balachandran, and Dario Poletti. 2019. "Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths" Entropy 21, no. 3: 228. https://doi.org/10.3390/e21030228
APA StyleXu, X., Choo, K., Balachandran, V., & Poletti, D. (2019). Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths. Entropy, 21(3), 228. https://doi.org/10.3390/e21030228