Entropy and its Application to Urban Systems
Abstract
:1. Introduction
2. Information and Entropy
2.1. Entropy Maximization
2.2. The Second Law and Thermodynamic Applications
3. Applications of Entropy to Urban Systems
3.1. Information Statistical Entropy
3.2. Thermodynamic Entropy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oxford Dictionaries. Available online: https://en.oxforddictionaries.com/definition/entropy (accessed on 26 October 2018).
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Tsallis, C. Generalized statistical mechanics: Connection with thermodynamics. J. Phys. A. Math. Gen. 1992, 25, 1019. [Google Scholar] [CrossRef]
- Weilenmann, M.; Kraemer, L.; Faist, P.; Renner, R. Axiomatic Relation between Thermodynamic and Information-Theoretic Entropies. Phys. Rev. Lett. 2016, 117, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. II. Phys. Rev. 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Ayeni, M.A.O. The city system and the use of entropy in urban analysis. Urban Ecol. 1976, 2, 33–53. [Google Scholar] [CrossRef]
- Batty, M. Cities as Complex Systems: Scaling, Interactions, Networks, Dynamics and Urban Morphologies. In The Encyclopedia of Complexity & System Science; Springer: Berlin, Germany, 2008; ISBN 9780749215453. [Google Scholar]
- Wegener, M. Operational Urban Models State of the Art. J. Am. Plan. Assoc. 1994, 60, 17–29. [Google Scholar] [CrossRef]
- Robinson, D. Computer Modelling for Sustainable Urban Design; Routledge: London, UK, 2011. [Google Scholar]
- Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 2014, 79, 1–14. [Google Scholar] [CrossRef]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; Resolution Adopted by the General Assembly on 25 September 2015 (A/RES/70/1); United Nations: New York, NY, USA, 2015; ISBN 9780874216561. [Google Scholar]
- Rees, W.; Wackernagel, M. Urban Ecological Footprints: Why Cities Cannot be Sustainable—And Why They are a Key to Sustainability. In Urban Ecology; Springer: Boston, MA, USA, 1997; pp. 537–555. ISBN 9780387734118. [Google Scholar]
- Filchakova, N.; Robinson, D.; Scartezzini, J.-L. Quo vadis thermodynamics and the city: A critical review of applications of thermodynamic methods to urban systems. Int. J. Ecodynamics 2007, 2, 222–230. [Google Scholar] [CrossRef]
- Bristow, D.; Kennedy, C. Why Do Cities Grow? Insights from Nonequilibrium Thermodynamics at the Urban and Global Scales. J. Ind. Ecol. 2015, 19, 211–221. [Google Scholar] [CrossRef]
- Pulselli, R.M.; Ciampalini, F.; Galli, A.; Pulselli, F.M. Non Equilibrium Thermodynamics and the City: A New Approach to Urban Studies. Ann. Chim. 2006, 96, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Balocco, C.; Grazzini, G. Sustainability and information in urban system analysis. Energy Policy 2006, 34, 2905–2914. [Google Scholar] [CrossRef]
- Fistola, R.; La Rocca, R.A. The Sustainable City and the Smart City: Measuring urban entropy first. Trans. Ecol. Environ. 2014, 191, 537–548. [Google Scholar]
- Georgescu-Roegen, N. The Entropy Law and the Economic Process; Harvard University Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Nicolis, G.; Prigogine, I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations; A Wiley-Interscience Publication; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Wilson, A.G. Entropy in Urban and Regional Modelling; Pion: London, UK, 1970. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Cesario, F.J. A Primer on Entropy Modeling. J. Am. Plan. Assoc. 1975, 41, 40–48. [Google Scholar] [CrossRef]
- De Martino, A.; De Martino, D. An introduction to the maximum entropy approach and its application to inference problems in biology. Heliyon 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Lesne, A. Shannon entropy: A rigorous notion at the crossroads between probability, information theory, dynamical systems and statistical physics. Math. Struct. Comput. Sci. 2014, 24. [Google Scholar] [CrossRef]
- Gull, S.F.; Skilling, J. Maximum entropy method in image processing. IEE Proc. F 1984, 131, 646–659. [Google Scholar] [CrossRef]
- Kondepudi, D.K. Introduction to Modern Thermodynamics; Wiley: Chichester, UK, 2008. [Google Scholar]
- Ben-Naim, A. Entropy Demystified: The Second Law Reduced to Plain Common Sense; World Scientific: Singapore, 2008. [Google Scholar]
- Goold, J.; Huber, M.; Riera, A.; Del Rio, L.; Skrzypczyk, P. The role of quantum information in thermodynamics - A topical review. J. Phys. A Math. Theor. 2016, 49. [Google Scholar] [CrossRef]
- Chapman, G.P. The Application of Information Theory to the Analysis of Population Distributions in Space. Econ. Geogr. 1970, 46, 317–331. [Google Scholar] [CrossRef]
- Allen, J.P.; Turner, E. The Most Ethnically Diverse Urban Places in the United States. Urban Geogr. 1989, 10, 523–539. [Google Scholar] [CrossRef]
- Yeh, A.G.-O.; Li, X. Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogramm. Eng. Remote Sensing 2001, 67, 83–90. [Google Scholar]
- Cabral, P.; Augusto, G.; Tewolde, M.; Araya, Y. Entropy in Urban Systems. Entropy 2013, 15, 5223–5236. [Google Scholar] [CrossRef] [Green Version]
- Mora, R.; Ruiz-Castillo, J. Entropy-based segregation indices. Sociol. Methodol. 2011, 41, 159–194. [Google Scholar] [CrossRef]
- Walsh, J.A.; Webber, M.J. Information theory: Some concepts and measures. Environ. Plan. A 1977, 9, 395–417. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Rahman, A.; Aggarwal, S.P.; Netzband, M.; Fazal, S. Monitoring Urban Sprawl Using Remote Sensing and GIS Techniques of a Fast Growing Urban Centre, India. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 56–64. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Remote Sensing Data Derived Parameters and its Use in Landslide Susceptibility Assessment Using Shannon’s Entropy and GIS. Appl. Mech. Mater. 2012, 225, 486–491. [Google Scholar] [CrossRef]
- Jat, M.K.; Garg, P.K.; Khare, D. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 26–43. [Google Scholar] [CrossRef]
- Sudhira, H.S.; Ramachandra, T.V.; Jagadish, K.S. Urban sprawl: Metrics, dynamics and modelling using GIS. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 29–39. [Google Scholar] [CrossRef]
- Li, L.; Xing, X.; Xia, H.; Huang, X. Entropy-Weighted instance matching between different sourcing points of interest. Entropy 2016, 18, 45. [Google Scholar] [CrossRef]
- Medvedkov, Y.V. The Concept of Entropy in Settlement Pattern Analysis. Pap. Reg. Sci. 1967, 18, 165–168. [Google Scholar] [CrossRef]
- Batty, M. Entropy in Spatial Aggregation. Geogr. Anal. 1976, 8, 1–21. [Google Scholar] [CrossRef]
- Batty, M.; Morphet, R.; Masucci, P.; Stanilov, K. Entropy, complexity, and spatial information. J. Geogr. Syst. 2014, 16, 363–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batty, M. Spatial Entropy. Geogr. Anal. 1974, 6, 1–31. [Google Scholar] [CrossRef]
- Theil, H. Economics and Information Theory; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1967. [Google Scholar]
- Rao, R. Diversity and Dissimilarity. Theor. Popul. Biol. 1982, 21, 24–43. [Google Scholar] [CrossRef]
- Wilson, A.G. A statistical theory of spatial distribution models. Transp. Res. 1967, 1, 253–269. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.G. The Use of Entropy Maximising Models in the Theory of Trip Distribution, Mode Split and Route Split. J. Transp. Econ. Policy 1969, 3, 108–126. [Google Scholar]
- Wilson, A. Entropy in urban and regional modelling: Retrospect and prospect. Geogr. Anal. 2010, 42, 364–394. [Google Scholar] [CrossRef]
- Weaver, W. Science and Complexity. Am. Sci. 1948, 36, 536–544. [Google Scholar]
- Batty, M. Reilly’s challenge: New laws of retail gravitation which define systems of central places. Environ. Plan. A 1978, 10, 185–219. [Google Scholar] [CrossRef]
- Senior, M.L. From gravity modelling entropy maximizing: A pedagogic guide. Prog. Hum. Geogr. 1979, 3, 175–210. [Google Scholar] [CrossRef]
- Wilson, A.G. The Use of the Concept of Entropy in System Modelling. Oper. Res. Q. 1970, 21, 247–265. [Google Scholar] [CrossRef]
- Wilson, A.G. Further developments of entropy maximising transport models. Transp. Plan. Technol. 1973, 1, 183–193. [Google Scholar] [CrossRef]
- Angel, S.; Hyman, G.M. Urban Fields: A Geometry of Movement for Regional Science; Pion: London, UK, 1976. [Google Scholar]
- Kapur, J.N. Entropy maximization models in regional and urban planning. Int. J. Math. Educ. Sci. Technol. 1982, 13, 693–714. [Google Scholar] [CrossRef]
- Snickars, F.; Weibull, J.W. A Minimum Information Principle: Theory and Practice. Reg. Sci. Urban Econ. 1977, 7, 137–168. [Google Scholar] [CrossRef]
- Van Zuylen, H.J.; Willumsen, L.G. The Most Likely Trip Matrix Estimated from Traffic Counts. Transp. Res. Part B 1980, 14, 281–293. [Google Scholar] [CrossRef]
- Cascetta, E.; Nguyen, S. A unified framework for estimating or updating origin/destination matrices from traffic counts. Transp. Res. Part B 1988, 22, 437–455. [Google Scholar] [CrossRef]
- Griffith, D.A.; Jones, K.G. Explorations into the relationship between spatial structure and spatial interaction. Environ. Plan. A 1980, 12, 187–201. [Google Scholar] [CrossRef]
- Mattsson, L.-G. Equivalence Between Welfare and Entropy Approaches to Residential Location. Reg. Sci. Urban Econ. 1984, 14, 147–173. [Google Scholar] [CrossRef]
- Roy, J.R.; Lesse, P.F. On appropriate microstate descriptions in entropy modelling. Transp. Res. Part B 1981, 15, 85–96. [Google Scholar] [CrossRef]
- Dincer, I.; Cengel, Y.A. Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering Ibrahim. Entropy 2001, 3, 116–149. [Google Scholar] [CrossRef]
- Hammond, G.P.; Stapleton, A.J. Exergy analysis of the United Kingdom energy system. Proc. Inst. Mech. Eng. Part A J. Power Energy 2001, 215, 141–162. [Google Scholar] [CrossRef] [Green Version]
- Balocco, C.; Papeschi, S.; Grazzini, G.; Basosi, R. Using exergy to analyze the sustainability of an urban area. Ecol. Econ. 2004, 48, 231–244. [Google Scholar] [CrossRef]
- Balocco, C.; Grazzini, G. Thermodynamic parameters for energy sustainability of urban areas. Sol. Energy 2000, 69, 351–356. [Google Scholar] [CrossRef]
- Nielsen, S.N.; Jørgensen, S.E. Sustainability analysis of a society based on exergy studies—A case study of the island of Samsø (Denmark). J. Clean. Prod. 2015, 96, 12–29. [Google Scholar] [CrossRef]
- Kalinci, Y.; Dincer, I.; Hepbasli, A. Energy and exergy analyses of a hybrid hydrogen energy system: A case study for Bozcaada. Int. J. Hydrogen Energy 2017, 42, 2492–2503. [Google Scholar] [CrossRef]
- Pal, R. Demystification of the Gouy-Stodola theorem of thermodynamics for closed systems. Int. J. Mech. Eng. Educ. 2017, 45, 142–153. [Google Scholar] [CrossRef]
- Bejan, A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 1996, 79, 1191–1218. [Google Scholar] [CrossRef]
- Bejan, A. Entropy generation minimization, exergy analysis, and the constructal law. Arab. J. Sci. Eng. 2013, 38, 329–340. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Thermodynamic Entropy as an Indicator for Urban Sustainability? Procedia Eng. 2017, 198, 802–812. [Google Scholar] [CrossRef]
- Sciubba, E.; Wall, G. A brief Commented History of Exergy from the Beginnings to 2004. Int. J. Thermodyn. 2007, 10, 1–26. [Google Scholar]
- Kotas, T.J. The Exergy Method of Thermal Plant Analysis; Butterworths: Tiptree, Essex, UK, 1985. [Google Scholar]
- Marchettini, N.; Pulselli, F.M.; Tiezzi, E. Entropy and the city. WIT Trans. Ecol. Environ. 2006, 93, 263–272. [Google Scholar]
- Rees, W.E. Cities as Dissipative Structures: Global Change and the Vulnerability of Urban Civilization. In Sustainability Science: The Emerging Paradigm and the Urban Environment; Springer: New York, NY, USA, 2012; pp. 247–291. [Google Scholar]
- Lovelock, J. Gaia, a New Look at Life on Earth; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Rifkin, J.; Howard, T. Entropy: A New World View; Viking Press: New York, NY, USA, 1980. [Google Scholar]
- Fistola, R. The unsustainable city. Urban entropy and social capital: The needing of a new urban planning. Procedia Eng. 2011, 21, 976–984. [Google Scholar] [CrossRef]
- Fistola, R. Urban entropy vs sustainability: A new town planning perspective. Sustain. City 2012, 155, 195–204. [Google Scholar]
- Pelorosso, R.; Gobattoni, F.; Leone, A. The low-entropy city: A thermodynamic approach to reconnect urban systems with nature. Landsc. Urban Plan. 2017, 168, 22–30. [Google Scholar] [CrossRef]
- Kovalev, A.V. Misuse of thermodynamic entropy in economics. Energy 2016, 100, 129–136. [Google Scholar] [CrossRef]
- Gillett, S.L. Entropy and its misuse, I. Energy, free and otherwise. Ecol. Econ. 2006, 56, 58–70. [Google Scholar] [CrossRef]
- Schwartzman, D. The Limits to Entropy: The Continuing Misuse of Thermodynamics in Environmental and Marxist theory. Sci. Soc. 2008, 72, 43–62. [Google Scholar] [CrossRef]
- Weiss, W. The balance of entropy on earth. Contin. Mech. Thermodyn. Anal. Complex Mater. Judicious Eval. Environ. 1994, 8, 37–51. [Google Scholar] [CrossRef]
- Lambert, F.L. Disorder—A Cracked Crutch for Supporting Entropy Discussions. J. Chem. Educ. 2002, 79, 187–192. [Google Scholar] [CrossRef]
- Haglund, J. Good Use of a “Bad” Metaphor: Entropy as Disorder. Sci. Educ. 2017, 26, 205–214. [Google Scholar] [CrossRef]
- Georgescu-Roegen, N. The Entropy Law and The Economic Process in Retrospect. East. Econ. J. 1986, 12, 3–25. [Google Scholar]
- Kåberger, T.; Månsson, B. Entropy and economic processes—Physics perspectives. Ecol. Econ. 2001, 36, 165–179. [Google Scholar] [CrossRef]
- Glucina, M.D.; Mayumi, K. Connecting thermodynamics and economics: Well-lit roads and burned bridges. Ann. N. Y. Acad. Sci. 2010, 1185, 11–29. [Google Scholar] [CrossRef]
- Georgesçu-Roegen, N. Nicholas Georgescu-Roegen about Himself. In Eminent Economists: Their Life Philosophies; Szenberg, M., Ed.; Cambridge University Press: Cambridge, UK, 1992; pp. 128–159. [Google Scholar]
- Cojanu, V. Georgescu-Roegen’s entropic model: A methodological appraisal. Int. J. Soc. Econ. 2009, 36, 274–286. [Google Scholar] [CrossRef]
- Røpke, I. The early history of modern ecological economics. Ecol. Econ. 2004, 50, 293–314. [Google Scholar] [CrossRef]
- Martinez-Alier, J. Ecological economics. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Wright, J.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 851–864. [Google Scholar]
- Levallois, C. Can de-growth be considered a policy option? A historical note on Nicholas Georgescu-Roegen and the Club of Rome. Ecol. Econ. 2010, 69, 2271–2278. [Google Scholar] [CrossRef] [Green Version]
- Wolman, A. The Metabolism of Cities. Sci. Am. 1965, 213, 178–190. [Google Scholar] [CrossRef]
- Schrödinger, E. What Is Life? Cambridge University Press: London, UK, 1944. [Google Scholar]
- Schneider, E.D.; Kay, J.J. Complexity and thermodynamics. Towards a new ecology. Futures 1994, 26, 626–647. [Google Scholar] [CrossRef]
- Müller, F. State-of-the-art in ecosystem theory. Ecol. Model. 1997, 100, 135–161. [Google Scholar] [CrossRef]
- Jorgensen, S.E.; Svirezhev, Y.M. Towards a Thermodynamic Theory for Ecological Systems; Elsevier: Oxford, UK, 2004. [Google Scholar]
- Hernando, A.; Plastino, A. Thermodynamics of urban population flows. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2012, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, A. The “Thermodynamics” of the City: Evolution and Complexity Science in Urban Modelling. In Complexity and Spatial Networks: In Search of Simplicity; Reggiani, A., Nijkamp, P., Eds.; Springer: Heidelberg, Germany, 2009; pp. 11–32. [Google Scholar]
- Feng, H.; Chen, X.; Heck, P.; Miao, H. An entropy-perspective study on the sustainable development potential of tourism destination ecosystem in Dunhuang, China. Sustainability 2014, 6, 8980–9006. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Li, W. Analyses of urban ecosystem based on information entropy. Ecol. Model. 2006, 197, 1–12. [Google Scholar] [CrossRef]
- Ben-Naim, A. A Farewell to Entropy: Statistical Thermodynamics Based on Information; World Scientific: New Jersey, NJ, USA, 2008; ISBN 9789812707062. [Google Scholar]
- Guiaşu, R.C.; Guiaşu, S. Conditional and Weighted Measures of Ecological Diversity. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2003, 11, 283–300. [Google Scholar] [CrossRef]
- Wilson, A.G. Some new forms of spatial interaction model: A review. Transp. Res. 1975, 9, 167–179. [Google Scholar] [CrossRef]
- Clarke, G.P.; Wilson, A. International Encyclopedia of Human Geography; Elsevier: Amsterdam, The Netherlands, 2009; pp. 260–261. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purvis, B.; Mao, Y.; Robinson, D. Entropy and its Application to Urban Systems. Entropy 2019, 21, 56. https://doi.org/10.3390/e21010056
Purvis B, Mao Y, Robinson D. Entropy and its Application to Urban Systems. Entropy. 2019; 21(1):56. https://doi.org/10.3390/e21010056
Chicago/Turabian StylePurvis, Ben, Yong Mao, and Darren Robinson. 2019. "Entropy and its Application to Urban Systems" Entropy 21, no. 1: 56. https://doi.org/10.3390/e21010056
APA StylePurvis, B., Mao, Y., & Robinson, D. (2019). Entropy and its Application to Urban Systems. Entropy, 21(1), 56. https://doi.org/10.3390/e21010056