Next Article in Journal
Unique Information and Secret Key Agreement
Next Article in Special Issue
Precipitation Complexity and its Spatial Difference in the Taihu Lake Basin, China
Previous Article in Journal
Vector Bundle Model of Complex Electromagnetic Space and Change Detection
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle

Noise Reduction Method of Underwater Acoustic Signals Based on CEEMDAN, Effort-To-Compress Complexity, Refined Composite Multiscale Dispersion Entropy and Wavelet Threshold Denoising

School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
*
Authors to whom correspondence should be addressed.
Entropy 2019, 21(1), 11; https://doi.org/10.3390/e21010011
Received: 28 November 2018 / Revised: 19 December 2018 / Accepted: 20 December 2018 / Published: 24 December 2018
(This article belongs to the Special Issue Entropy Applications in Environmental and Water Engineering II)
  |  
PDF [2603 KB, uploaded 24 December 2018]
  |     |  

Abstract

Owing to the problems that imperfect decomposition process of empirical mode decomposition (EMD) denoising algorithm and poor self-adaptability, it will be extremely difficult to reduce the noise of signal. In this paper, a noise reduction method of underwater acoustic signal denoising based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), effort-to-compress complexity (ETC), refined composite multiscale dispersion entropy (RCMDE) and wavelet threshold denoising is proposed. Firstly, the original signal is decomposed into several IMFs by CEEMDAN and noise IMFs can be identified according to the ETC of IMFs. Then, calculating the RCMDE of remaining IMFs, these IMFs are divided into three kinds of IMFs by RCMDE, namely noise-dominant IMFs, real signal-dominant IMFs, real IMFs. Finally, noise IMFs are removed, wavelet soft threshold denoising is applied to noise-dominant IMFs and real signal-dominant IMFs. The denoised signal can be obtained by combining the real IMFs with the denoised IMFs after wavelet soft threshold denoising. Chaotic signals with different signal-to-noise ratio (SNR) are used for denoising experiments by comparing with EMD_MSE_WSTD and EEMD_DE_WSTD, it shows that the proposed algorithm has higher SNR and smaller root mean square error (RMSE). In order to further verify the effectiveness of the proposed method, which is applied to noise reduction of real underwater acoustic signals. The results show that the denoised underwater acoustic signals not only eliminate noise interference also restore the topological structure of the chaotic attractors more clearly, which lays a foundation for the further processing of underwater acoustic signals. View Full-Text
Keywords: underwater acoustic signals; CEEMDAN; effort-to-compress complexity; refined composite multiscale dispersion entropy; wavelet threshold denoising underwater acoustic signals; CEEMDAN; effort-to-compress complexity; refined composite multiscale dispersion entropy; wavelet threshold denoising
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Li, G.; Guan, Q.; Yang, H. Noise Reduction Method of Underwater Acoustic Signals Based on CEEMDAN, Effort-To-Compress Complexity, Refined Composite Multiscale Dispersion Entropy and Wavelet Threshold Denoising. Entropy 2019, 21, 11.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top