# Energy Dissipation and Information Flow in Coupled Markovian Systems

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Background

## 3. Results

#### 3.1. Alternating Energy Levels

#### 3.2. Arbitrary System Rates

#### 3.3. Arbitrary Environment Rates

## 4. Discussion

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev.
**1957**, 106, 620–630. [Google Scholar] [CrossRef] - Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev.
**1961**, 5, 183–191. [Google Scholar] [CrossRef] - Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature
**2012**, 483, 187–189. [Google Scholar] [CrossRef] [PubMed] - Jun, Y.; Gavrilov, M.; Bechhoefer, J. High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett.
**2014**, 113, 190601. [Google Scholar] [CrossRef] [PubMed] - Cheong, R.; Rhee, A.; Wang, C.J.; Nemenman, I.; Levchenko, A. Information transduction capacity of noisy biochemical signaling networks. Science
**2011**, 334, 354–358. [Google Scholar] [CrossRef] [PubMed] - Mehta, P.; Schwab, D.J. Energetic costs of cellular computation. Proc. Natl. Acad. Sci. USA
**2012**, 109, 17978–17982. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Still, S.; Sivak, D.A.; Bell, A.J.; Crooks, G.E. Thermodynamics of prediction. Phys. Rev. Lett.
**2012**, 109, 120604. [Google Scholar] [CrossRef] [PubMed] - Hess, H. Engineering applications of biomolecular motors. Annu. Rev. Biomed. Eng.
**2011**, 13, 429–450. [Google Scholar] [CrossRef] [PubMed] - Brown, A.I.; Sivak, D.A. Toward the design principles of molecular machines. Phys. Can.
**2017**, 73, 61–66. [Google Scholar] - Tagkopoulos, I.; Liu, Y.C.; Tavazoie, S. Predictive Behavior within Microbial Genetic Networks. Science
**2008**, 320, 1313–1317. [Google Scholar] [CrossRef] [PubMed] - Laughlin, S. A simple coding procedure enhances a neuron’s information capacity. Z. Naturforsch. C
**1981**, 36, 910–912. [Google Scholar] [CrossRef] [PubMed] - McGregor, S.; Vasas, V.; Husbands, P.; Fernando, C. Evolution of Associative Learning in Chemical Networks. PLoS Comput. Biol.
**2012**, 8, e1002739. [Google Scholar] [CrossRef] [PubMed] - Chandler, D. Introduction to Modern Statistical Mechanics; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Schnakenberg, J. Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys.
**1976**, 48, 571–585. [Google Scholar] [CrossRef] - Brittain, R.A.; Jones, N.S.; Ouldridge, T.E. What we learn from the learning rate. J. Stat. Mech. Theory Exp.
**2017**, 2017, 063502. [Google Scholar] [CrossRef] [Green Version] - Barato, A.C.; Hartich, D.; Seifert, U. Efficiency of cellular information processing. New J. Phys.
**2014**, 16, 103024. [Google Scholar] [CrossRef] [Green Version] - Hartich, D.; Barato, A.C.; Seifert, U. Sensory capacity: An information theoretical measure of the performance of a sensor. Phys. Rev. E
**2016**, 93, 022116. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Govern, C.C.; ten Wolde, P.R. Energy Dissipation and Noise Correlations in Biochemical Sensing. Phys. Rev. Lett.
**2014**, 113, 258102. [Google Scholar] [CrossRef] [PubMed] - Berg, H.C.; Purcell, E.M. Physics of chemoreception. Biophys. J.
**1977**, 20, 193–219. [Google Scholar] [CrossRef] [Green Version] - McIntosh, L. Information Processing and Energy Dissipation in Neurons. Ph.D. Thesis, University of Hawaii at Manoa, Honolulu, HI, USA, 2012. [Google Scholar]

**Figure 1.**Discrete-time system and environmental dynamics. The system ${Y}_{t}$ and environment ${X}_{t}$ alternate steps, with system evolution during relaxation steps, and environment evolution during work steps.

**Figure 2.**Model kinetics. States and transition rates for models with two system states and two environment states. (

**a**) System equilibration rate and energy gap magnitude and environment transition rate are independent of environment state, but the direction of the energy gap switches with environment state; (

**b**) System equilibration rate and energy gap vary with environment state. Environment transition rate is fixed; (

**c**) System equilibration rate and energy gap and environment transition rate vary with environment state.

**Figure 3.**Nostalgia increases with energy gap and system equilibration rate. Nostalgia ${I}_{\mathrm{nos}}^{\mathrm{ss}}$ as a function of the energy gap $\beta \Delta E$ and transition ratio ${k}_{\mathrm{sys}}/{\kappa}_{\mathrm{env}}$ (${\kappa}_{\mathrm{env}}\Delta t={10}^{-12}$).

**Figure 4.**Dissipation ratio increases with energy gap and system equilibration rate. Steady-state dissipation ratio ${\varphi}^{\mathrm{ss}}\equiv {I}_{\mathrm{nos}}^{\mathrm{ss}}/\beta \u2329{W}_{\mathrm{diss}}^{ss}\u232a$ as a function of the energy gap $\beta \Delta E$ and transition ratio ${k}_{\mathrm{sys}}/{\kappa}_{\mathrm{env}}$ (${\kappa}_{\mathrm{env}}\Delta t={10}^{-12}$).

**Figure 5.**Lower bound on dissipation ratio for fixed environment transition rate. The steady-state dissipation ratio ${\varphi}^{\mathrm{ss}}$ is lower-bounded by the black curve (9) for all values of the transition ratio ${k}_{\mathrm{sys}}/{\kappa}_{\mathrm{env}}$. Each point corresponds to a particular set of parameters ${k}^{A}$, ${k}^{B}$, $\beta \Delta {E}^{A}$, and $\beta \Delta {E}^{B}$. (

**a**) Models in which the energy gaps $\Delta {E}^{A}$ and $\Delta {E}^{B}$ are anti-aligned; (

**b**) Models in which the energy gaps $\Delta {E}^{A}$ and $\Delta {E}^{B}$ are aligned (${\kappa}_{\mathrm{env}}\Delta t={10}^{-12}$).

**Figure 6.**Lower bound on dissipation ratio for varying environment transition rate. The steady-state dissipation ratio ${\varphi}^{\mathrm{ss}}$ is lower-bounded by the black curve (9) for all values of the transition ratio ${k}_{\mathrm{sys}}/{\kappa}_{\mathrm{env}}$. Each point corresponds to a particular set of parameters ${k}^{A}$, ${k}^{B}$, $\beta \Delta {E}^{A}$, and $\beta \Delta {E}^{B}$. The environment transition rates are ${\kappa}^{AB}=1.8{\overline{\kappa}}_{\mathrm{env}}$ and ${\kappa}^{BA}=0.2{\overline{\kappa}}_{\mathrm{env}}$. (

**a**) Models in which the energy gaps $\Delta {E}^{A}$ and $\Delta {E}^{B}$ are anti-aligned; (

**b**) Models in which the energy gaps $\Delta {E}^{A}$ and $\Delta {E}^{B}$ are aligned (${\overline{\kappa}}_{\mathrm{env}}\Delta t={10}^{-12}$).

**Table 1.**Limiting behavior of dissipation ratio. Steady-state dissipation ratio ${\varphi}^{\mathrm{ss}}$ in the various limits of driving strength and speed. These limits are given by the bound in Equation (10), valid in the limit of continuous time.

Driving Strength | Weak | Strong | |
---|---|---|---|

Driving Speed | ($\mathit{\beta}\mathbf{\Delta}\mathit{E}\ll \mathbf{1}$) | ($\mathit{\beta}\mathbf{\Delta}\mathit{E}\gtrsim \mathbf{1}$) | |

Quasi-static | (${\kappa}_{\mathrm{env}}\ll {k}_{\mathrm{sys}}$) | ${\varphi}^{\mathrm{ss}}=1$ | ${\varphi}^{\mathrm{ss}}=1$ |

Intermediate | (${\kappa}_{\mathrm{env}}\sim {k}_{\mathrm{sys}}$) | ${\varphi}^{\mathrm{ss}}={(1+{\kappa}_{\mathrm{env}}/{k}_{\mathrm{sys}})}^{-1}$ | ${(1+{\kappa}_{\mathrm{env}}/{k}_{\mathrm{sys}})}^{-1}\le {\varphi}^{\mathrm{ss}}\le 1$ |

Fast | (${\kappa}_{\mathrm{env}}\gg {k}_{\mathrm{sys}}$) | ${\varphi}^{\mathrm{ss}}={k}_{\mathrm{sys}}/{\kappa}_{\mathrm{env}}$ | ${k}_{\mathrm{sys}}/{\kappa}_{\mathrm{env}}\le {\varphi}^{\mathrm{ss}}\le 1$ |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Quenneville, M.E.; Sivak, D.A.
Energy Dissipation and Information Flow in Coupled Markovian Systems. *Entropy* **2018**, *20*, 707.
https://doi.org/10.3390/e20090707

**AMA Style**

Quenneville ME, Sivak DA.
Energy Dissipation and Information Flow in Coupled Markovian Systems. *Entropy*. 2018; 20(9):707.
https://doi.org/10.3390/e20090707

**Chicago/Turabian Style**

Quenneville, Matthew E., and David A. Sivak.
2018. "Energy Dissipation and Information Flow in Coupled Markovian Systems" *Entropy* 20, no. 9: 707.
https://doi.org/10.3390/e20090707