Next Article in Journal
Change-Point Detection Using the Conditional Entropy of Ordinal Patterns
Next Article in Special Issue
Cities, from Information to Interaction
Previous Article in Journal
Energy Dissipation and Information Flow in Coupled Markovian Systems
Open AccessArticle

Morphogenesis of Urban Water Distribution Networks: A Spatiotemporal Planning Approach for Cost-Efficient and Reliable Supply

Unit of Environmental Engineering, University of Innsbruck, Technikerstraße 13, A-6020 Innsbruck, Austria
*
Author to whom correspondence should be addressed.
Entropy 2018, 20(9), 708; https://doi.org/10.3390/e20090708
Received: 26 July 2018 / Revised: 23 August 2018 / Accepted: 13 September 2018 / Published: 14 September 2018
(This article belongs to the Special Issue Entropy and Scale-Dependence in Urban Modelling)
Cities and their infrastructure networks are always in motion and permanently changing in structure and function. This paper presents a methodology for automatically creating future water distribution networks (WDNs) that are stressed step-by-step by disconnection and connection of WDN parts. The associated effects of demand shifting and flow rearrangements are simulated and assessed with hydraulic performances. With the methodology, it is possible to test various planning and adaptation options of the future WDN, where the unknown (future) network is approximated via the co-located and known (future) road network, and hence different topological characteristics (branched vs. strongly looped layout) can be investigated. The reliability of the planning options is evaluated with the flow entropy, a measure based on Shannon’s informational entropy. Uncertainties regarding future water consumption and water loss management are included in a scenario analysis. To avoid insufficient water supply to customers during the transition process from an initial to a final WDN state, an adaptation concept is proposed where critical WDN components are replaced over time. Finally, the method is applied to the drastic urban transition of Kiruna, Sweden. Results show that without adaptation measures severe performance drops will occur after the WDN state 2023, mainly caused by the disconnection of WDN parts. However, with low adaptation efforts that consider 2–3% pipe replacement, sufficient pressure performances are achieved. Furthermore, by using an entropy-cost comparison, the best planning options are determined. View Full-Text
Keywords: urban transition; EPANET 2; network disconnection; network growth; uncertainties; performance and adaptation; flow entropy urban transition; EPANET 2; network disconnection; network growth; uncertainties; performance and adaptation; flow entropy
Show Figures

Figure 1

MDPI and ACS Style

Zischg, J.; Rauch, W.; Sitzenfrei, R. Morphogenesis of Urban Water Distribution Networks: A Spatiotemporal Planning Approach for Cost-Efficient and Reliable Supply. Entropy 2018, 20, 708.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop