# GHZ States as Tripartite PR Boxes: Classical Limit and Retrocausality

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. GHZ and PR-Box Correlations in the Classical Limit

## 2. Retrocausality in PR-Box and GHZ Correlations

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Aharonov, Y.; University of South Carolina, Columbia, SC, USA. Unpublished Lecture Notes.
- Aharonov, Y.; Rohrlich, D. Quantum Paradoxes: Quantum Theory for the Perplexed; Wiley-VCH: Weinheim, Germany, 2005; Chapters 6, 18. [Google Scholar]
- Shimony, A. Controllable and uncontrollable nonlocality. In Foundations of Quantum Mechanics in Light of the New Technology; Kamefuchi, S., Fujikawa, K., Eds.; Japan Physical Society: Tokyo, Japan, 1983; p. 225. [Google Scholar]
- Shimony, A. Events and processes in the quantum world. In Quantum Concepts of Space and Time; Penrose, R., Isham, C., Eds.; Clarendon Press: Oxford, UK, 1986; p. 182. [Google Scholar]
- Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics
**1964**, 1, 195–200. [Google Scholar] [CrossRef] - Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett.
**1969**, 23, 880–884. [Google Scholar] [CrossRef] - Bell, J.S. The theory of local beables. Epist. Lett.
**1976**, 9, 11. [Google Scholar] - Popescu, S.; Rohrlich, D. Quantum nonlocality as an axiom. Found. Phys.
**1994**, 24, 379–385. [Google Scholar] [CrossRef] [Green Version] - Rohrlich, D. PR-box correlations have no classical limit. In Quantum Theory: A Two-Time Success Story [Yakir Aharonov Festschrift]; Struppa, D.C., Tollaksen, J.M., Eds.; Springer: Milan, Italy, 2013; pp. 205–211. [Google Scholar]
- Rohrlich, D. Stronger-than-quantum bipartite correlations violate relativistic causality in the classical limit. arXiv, 2014; arXiv:1408.3125. [Google Scholar]
- Gisin, N. Quantum correlations in Newtonian space and time: Faster than light communication or nonlocality. In (The Frontiers Collection) Quantum [Un]Speakables II: Half a Century of Bell’s Theorem; Bertlmann, R., Zeilinger, A., Eds.; Springer: Berlin, Germany, 2017; pp. 321–330. [Google Scholar]
- Navascués, M.; Wunderlich, H. A glance beyond the quantum model. Proc. R. Soc. A
**2010**, 466, 881–890. [Google Scholar] [CrossRef] [Green Version] - Greenberger, D.M.; Horne, M.; Zeilinger, A. Going beyond Bell’s theorem. In Bell’s Theorem, Quantum Theory, and Conceptions of the Universe; Kafatos, M., Ed.; Kluwer Academic Pub.: Dordrecht, The Netherlands, 1989; pp. 69–72. [Google Scholar]
- Tsirelson, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys.
**1980**, 4, 93–100. [Google Scholar] [CrossRef] - Grunhaus, J.; Popescu, S.; Rohrlich, D. Jamming nonlocal quantum correlations. Phys. Rev. A
**1996**, 53, 3781–3874. [Google Scholar] [CrossRef] [PubMed] - Rohrlich, D. Three attempts at two axioms for quantum mechanics. In Probability in Physics; Ben-Menahem, Y., Hemmo, M., Eds.; Springer: Berlin, Germany, 2012; pp. 187–200. [Google Scholar]

**Figure 1.**The horizontal dotted line represents an equal-time surface in the unprimed frame, while the tilted dotted lines represent two equal-time surfaces in the primed frame. The arrows, each representing a cause and an effect, form a closed causal loop.

**Figure 2.**The overlap of the future light cones of $\widehat{a}$ and $\widehat{b}$ either (

**a**) lies or (

**b**) does not lie entirely within the future light cone of $\widehat{j}$.

**Figure 3.**Configurations in which Jim can (

**a**) causally and (

**b**) retrocausally put pairs of particles shared by Alice and Bob in product or entangled states, as he chooses. The dashed arrows connect cause with effect.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rohrlich, D.; Hetzroni, G.
GHZ States as Tripartite PR Boxes: Classical Limit and Retrocausality. *Entropy* **2018**, *20*, 478.
https://doi.org/10.3390/e20060478

**AMA Style**

Rohrlich D, Hetzroni G.
GHZ States as Tripartite PR Boxes: Classical Limit and Retrocausality. *Entropy*. 2018; 20(6):478.
https://doi.org/10.3390/e20060478

**Chicago/Turabian Style**

Rohrlich, Daniel, and Guy Hetzroni.
2018. "GHZ States as Tripartite PR Boxes: Classical Limit and Retrocausality" *Entropy* 20, no. 6: 478.
https://doi.org/10.3390/e20060478