Thermodynamic Properties of a Regular Black Hole in Gravity Coupling to Nonlinear Electrodynamics
Abstract
1. Introduction
2. Thermodynamic Properties of NED Black Hole
3. Thermodynamic Geometry of NED Black Hole
4. Discussions
Acknowledgments
Conflicts of Interest
References
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 1974, 9, 3292. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199. [Google Scholar] [CrossRef]
- Wald, R.M. The Thermodynamics of Black Holes. Living Rev. Rel. 2001, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Hooft, G. On the quantum structure of a black hole. Nucl. Phys. 1985, B256, 727. [Google Scholar] [CrossRef]
- Weinhold, F. Metric geometry of equilibrium thermodynamics. J. Chem. Phys. 1975, 63, 2479. [Google Scholar] [CrossRef]
- Ruppeiner, G. Thermodynamics: A Riemannian geometric model. Phys. Rev. A 1979, 20, 1608. [Google Scholar] [CrossRef]
- Ruppeiner, G. Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 1995, 67, 605, Erratum in 1996, 68, 313. [Google Scholar] [CrossRef]
- Ruppeiner, G. Thermodynamic curvature and phase transitions in Kerr-Newman black holes. Phys. Rev. D 2008, 78, 024016. [Google Scholar] [CrossRef]
- Li, G.Q.; Mo, J.X. Phase transition and thermodynamic geometry of f(R) AdS black holes in the grand canonical ensemble. Phys. Rev. D 2016, 93, 124021. [Google Scholar] [CrossRef]
- Soroushfar, S.; Saffari, R.; Kamvar, N. Thermodynamic geometry of black holes in f(R) gravity. Eur. Phys. J. C 2016, 76, 476. [Google Scholar] [CrossRef]
- Sahay, A. Restricted thermodynamic fluctuations and the Ruppeiner geometry of black holes. Phys. Rev. D 2017, 95, 064002. [Google Scholar] [CrossRef]
- Hendi, S.H.; Sheykhi, A.; Panahiyan, S.; Panah, B.E. Phase transition and thermodynamic geometry of Einstein–Maxwell-dilaton black holes. Phys. Rev. D 2015, 92, 064028. [Google Scholar] [CrossRef]
- Zhang, J.L.; Cai, R.G.; Yu, H.W. Phase transition and thermodynamical geometry of Reissner-Nordström-AdS black holes in extended phase space. Phys. Rev. D 2015, 91, 044028. [Google Scholar] [CrossRef]
- Mansoori, S.A.H.; Mirza, B.; Fazel, M. Hessian matrix, specific heats, Nambu brackets, and thermodynamic geometry. J. High Energy Phys. 2015, 4, 115. [Google Scholar] [CrossRef]
- Zhang, J.L.; Cai, R.G.; Yu, H.W. Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS5 × S5 spacetime. J. High Energy Phys. 2015, 2, 143. [Google Scholar] [CrossRef]
- Suresh, J.; Tharanath, R.; Varghese, N.; Kuriakose, V.C. The thermodynamics and thermodynamic geometry of the Park black hole. Eur. Phys. J. C 2014, 74, 2819. [Google Scholar] [CrossRef]
- Han, Y.W.; Chen, G.; Lan, M.J. Legendre transformations and the thermodynamic geometry of 5D black holes. Chin. Phys. C 2013, 37, 035101. [Google Scholar] [CrossRef][Green Version]
- Wei, S.W.; Liu, Y.X. Critical phenomena and thermodynamic geometry of charged Gauss–Bonnet AdS black holes. Phys. Rev. D 2013, 87, 044014. [Google Scholar] [CrossRef]
- Lala, A.; Roychowdhury, D. Ehrenfest’s scheme and thermodynamic geometry in Born-Infeld AdS black holes. Phys. Rev. D 2012, 86, 084027. [Google Scholar] [CrossRef]
- Bellucci, S.; Tiwari, B.N. Thermodynamic geometry and topological Einstein–Yang–Mills black holes. Entropy 2012, 14, 1045–1078. [Google Scholar] [CrossRef]
- Biswas, R.; Chakraborty, S. Black hole thermodynamics in Horava Lifshitz gravity and the related geometry. Astrophys. Space Sci. 2011, 332, 193–199. [Google Scholar] [CrossRef]
- Niu, C.; Tian, Y.; Wu, X.N. Critical phenomena and thermodynamic geometry of Reissner-Nordström-anti-de Sitter black holes. Phys. Rev. D 2012, 85, 024017. [Google Scholar] [CrossRef]
- Akbar, M.; Quevedo, H.; Saifullah, K.; Sanchez, A.; Taj, S. Thermodynamic geometry of charged rotating BTZ black holes. Phys. Rev. D 2011, 83, 084031. [Google Scholar] [CrossRef]
- Sahay, A.; Sarkar, T.; Sengupta, G. On the phase structure and thermodynamic geometry of R-charged black holes. J. High Energy Phys. 2010, 2010, 125. [Google Scholar] [CrossRef]
- Banerjee, R.; Ghosh, S.; Roychowdhury, D. New type of phase transition in Reissner Nordström–AdS black hole and its thermodynamic geometry. Phys. Lett. B 2011, 696, 156–162. [Google Scholar] [CrossRef]
- Banerjee, R.; Modak, S.K.; Samanta, S. Second order phase transition and thermodynamic geometry in Kerr–AdS black holes. Phys. Rev. D 2011, 84, 064024. [Google Scholar] [CrossRef]
- Sahay, A.; Sarkar, T.; Sengupta, G. On the thermodynamic geometry and critical phenomena of AdS black holes. J. High Energy Phys. 2010, 2010, 82. [Google Scholar] [CrossRef]
- Wei, S.W.; Liu, Y.X.; Wang, Y.Q.; Guo, H. Thermodynamic geometry of black hole in the deformed Hořava–Lifshitz gravity. Europhys. Lett. 2012, 99, 20004. [Google Scholar] [CrossRef]
- Biswas, R.; Chakraborty, S. Black holes in the Einstein–Gauss–Bonnet theory and the geometry of their thermodynamics—II. Astrophys. Space Sci. 2010, 326, 39. [Google Scholar] [CrossRef]
- Bellucci, S.; Tiwari, B.N. On the microscopic perspective of black branes thermodynamic geometry. Entropy 2010, 12, 2097–2143. [Google Scholar] [CrossRef]
- Sarkar, T.; Sengupta, G.; Tiwari, B.N. Thermodynamic geometry and extremal black holes in string theory. J. High Energy Phys. 2008, 810, 76. [Google Scholar] [CrossRef]
- Myung, Y.S.; Kim, Y.W.; Park, Y.J. Ruppeiner geometry and 2D dilaton gravity in the thermodynamics of black holes. Phys. Lett. B 2008, 663, 342–350. [Google Scholar] [CrossRef][Green Version]
- Quevedo, H.; Vazquez, A. The geometry of thermodynamics. AIP Conf. Proc. 2008, 977, 165–172. [Google Scholar]
- Sarkar, T.; Sengupta, G.; Tiwari, B.N. On the thermodynamic geometry of BTZ black holes. J. High Energy Phys. 2006, 611, 15. [Google Scholar] [CrossRef]
- Shen, J.Y.; Cai, R.G.; Wang, B.; Su, R.K. Thermodynamic geometry and critical behavior of black holes. Int. J. Mod. Phys. A 2007, 22, 11–27. [Google Scholar] [CrossRef]
- Åman, J.; Bengtsson, I.; Pidokrajt, N. Geometry of black hole thermodynamics. Gen. Rel. Grav. 2003, 35, 1733–1743. [Google Scholar] [CrossRef]
- Hendi, S.H.; Li, G.Q.; Mo, J.X.; Panahiyan, S.; Panah, B.E. New perspective for black hole thermodynamics in Gauss–Bonnet-Born-Infeld massive gravity. Eur. Phys. J. C 2016, 76, 571. [Google Scholar] [CrossRef]
- Ayón-Beato, E.; García, A. Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 1998, 80, 5056. [Google Scholar] [CrossRef]
- Balart, L.; Vagenas, E.C. Regular black holes with a nonlinear electrodynamics source. Phys. Rev. D 2014, 90, 124045. [Google Scholar] [CrossRef]
- Ayon-Beato, E.; Garcia, A. Four-parametric regular black hole solution. Gen. Rel. Grav. 2005, 37, 635–641. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 2001, 63, 044005. [Google Scholar] [CrossRef]
- Wang, P. Horizon entropy in modified gravity. Phys. Rev. D 2005, 72, 024030. [Google Scholar] [CrossRef]
- Vollick, D.N. Noether charge and black hole entropy in modified theories of gravity. Phys. Rev. D 2007, 76, 124001. [Google Scholar] [CrossRef]
- Hendi, S.H.; Panah, B.E.; Panahiyan, S. Thermodynamical structure of AdS black holes in massive gravity with stringy gauge-gravity corrections. Class. Quant. Gravit. 2016, 33, 235007. [Google Scholar] [CrossRef]
- Briscese, F.; Elizalde, E. Black hole entropy in modified-gravity models. Phys. Rev. D 2008, 77, 044009. [Google Scholar] [CrossRef]
- Saini, A.; Stojkovic, D. Nonlocal (but also nonsingular) physics at the last stages of gravitational collapse. Phys. Rev. D 2014, 89, 044003. [Google Scholar] [CrossRef]
- Myung, Y.S. Entropy of a black hole in infinite-derivative gravity. Phys. Rev. D 2017, 95, 106003. [Google Scholar] [CrossRef]
- Culetu, H. On a regular charged black hole with a nonlinear electric source. Int. J. Theor. Phys. 2015, 54, 2855–2863. [Google Scholar] [CrossRef]
- Salazar, H.; García, A.; Plebański, J. Duality rotations and type D solutions to Einstein equations with nonlinear electromagnetic sources. J. Math. Phys. 1987, 28, 2171–2181. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Regular multihorizon black holes in modified gravity with nonlinear electrodynamics. Phys. Rev. D 2017, 96, 104008. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Wang, X. Construction of regular black holes in general relativity. Phys. Rev. D 2016, 94, 124027. [Google Scholar] [CrossRef]
- Misner, C.M.; Sharp, D.H. Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse. Phys. Rev. 1964, 136, B571. [Google Scholar] [CrossRef]
- Parikh, M.K. Volume of black holes. Phys. Rev. D 2006, 73, 124201. [Google Scholar] [CrossRef]
- Cai, R.G.; Hu, Y.P.; Pan, Q.Y.; Zhang, Y.L. Thermodynamics of black holes in massive gravity. Phys. Rev. D 2015, 91, 024032. [Google Scholar] [CrossRef]
- Wei, Y.H.; Cui, X.; Zhao, J.X. Thermodynamic Properties and Thermodynamic Geometries of Black p-Branes. Commun. Theor. Phys. 2016, 65, 28. [Google Scholar]
- Myung, Y.S.; Kim, Y.W.; Park, Y.J. Thermodynamics of regular black hole. Gen. Rel. Grav. 2009, 41, 1051–1067. [Google Scholar] [CrossRef]
- Ruppeiner, G. Some Early Ideas on the Metric Geometry of Thermodynamics. J. Low Temp. Phys. 2016, 185, 246–261. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.-H. Thermodynamic Properties of a Regular Black Hole in Gravity Coupling to Nonlinear Electrodynamics. Entropy 2018, 20, 192. https://doi.org/10.3390/e20030192
Wei Y-H. Thermodynamic Properties of a Regular Black Hole in Gravity Coupling to Nonlinear Electrodynamics. Entropy. 2018; 20(3):192. https://doi.org/10.3390/e20030192
Chicago/Turabian StyleWei, Yi-Huan. 2018. "Thermodynamic Properties of a Regular Black Hole in Gravity Coupling to Nonlinear Electrodynamics" Entropy 20, no. 3: 192. https://doi.org/10.3390/e20030192
APA StyleWei, Y.-H. (2018). Thermodynamic Properties of a Regular Black Hole in Gravity Coupling to Nonlinear Electrodynamics. Entropy, 20(3), 192. https://doi.org/10.3390/e20030192