Disproportionate Allocation of Indirect Costs at Individual-Farm Level Using Maximum Entropy
Abstract
:1. Introduction
2. Methods
2.1. Proportional Allocation
2.2. Core Maximum Entropy Model
2.3. Inequality Restrictions
2.4. Comparison of Applications
3. Data
- Labour input is reported in normal working days (NWD), including all work forces (family members and employed workers).
- Machinery costs include all costs in CHF related to farm-owned machines, as well as machinery services contracted from other farmers or companies.
4. Results
5. Discussion and Conclusions
Acknowledgments
Conflicts of Interest
Appendix A
CoreModel | InequalityModel |
(1) (11) (13) (14) (15) | (1) (18) (20) (21) (15) |
α | coefficient alpha (Equation (3)) |
b | boundary |
β | indirect cost item, e.g., machinery costs, in CHF per hectare |
c | total indirect costs, e.g., machinery, in CHF |
g | group of the upward/downward structure, (g = 1, ..., G(i)) |
G(i) | the group of the last component of enterprise i |
H | Shannon Entropy measure |
i | arable crop, (i = 1, 2, ..., I) |
k | support point, (k = 1, 2, ..., K) |
p | probability of support point |
u | area in hectares, corrected for boundaries, equal to x for all non-boundary enterprises |
x | area in hectares |
θ | expansion coefficient theta (Equation (15)) |
y | support point (differences between z’s) |
z | support point |
References
- Hemme, T. (Ed.) Dairy Report 2016 for a Better Understanding of the Dairy World; International Farm Comparison Network: Kiel, Germany, 2016. [Google Scholar]
- Ciaian, P.; Langrell, S.; y Paloma, S.G. (Eds.) Chapter 1. Introduction to Production Costs. In Sustainability and Production Costs in the Global Farming Sector: Comparative Analysis and Methodologies, Scientific and Policy Reports; Report EUR 25436EN; European Commission Joint Research Centre: Seville, Spain, 2012. [Google Scholar]
- Drury, C. Management and Cost Accounting, 6th ed.; Thomson: London, UK, 2004. [Google Scholar]
- Horngren, C.T.; Bhimani, A.; Datar, S.M.; Foster, G. Management and Cost Accounting, 3rd ed.; Prentice Hall: Harlow, UK, 2005. [Google Scholar]
- McLaney, E.; Atrill, P. Accounting an Introduction, 4th ed.; Prentice Hall: Harlow, UK, 2008. [Google Scholar]
- AAEA. Commodity Costs and Returns Estimation Handbook; A Report of the AAEA Task Force on Commodity Costs and Returns; American Agricultural Economics Association: Ames, IA, USA, 2000. [Google Scholar]
- Agri Benchmark. Cash Crop Report 2011; Agri Benchmark Cash Crop Network; Johann Heinrich von Thünen-Institute: Braunschweig, Germany, 2011. [Google Scholar]
- Carli, G.; Canavari, M.; Grandi, A. Introducing Activity-Based Costing in Farm Management: The Design of the FarmBO System. Int. J. Agric. Environ. Inf. Syst. 2014, 5, 69–84. [Google Scholar] [CrossRef]
- Wouters, M.; Stecher, J. Development of real-time product cost measurement: A case study in a medium-sized manufacturing company. Int. J. Prod. Econ. 2017, 183, 235–244. [Google Scholar] [CrossRef]
- Léony, Y.; Peeters, L.; Quinqu, M.; Surry, Y. The Use of Maximum Entropy to Estimate Input-Output Coefficients from Regional Farm Accounting Data. J. Agric. Econ. 1999, 50, 425–439. [Google Scholar] [CrossRef]
- Peeters, L.; Surry, Y.R. Farm Cost Allocation Based on the Maximum Entropy Methodology—The Case of Saskatchewan Crop Farms; Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 2003. [Google Scholar]
- Peeters, L.; Surry, Y. Estimation d’un modèle à paramètres variables par la méthode d’entropie croisée généralisée et application à la répartition des coûts de production en agriculture. Insee—Actes des Journées de Méthodologie Statistique. 2005. Available online: http://jms.insee.fr/index.php?php_action=HISTO&id_histo=8&liste=histo (accessed on 29 August 2017).
- Fragoso, R.M.; da Silva Carvalho, M.L. Estimation of joint costs allocation coefficients using the maximum entropy: A case of Mediterranean farms. J. Quant. Econ. 2012, 10, 91–111. [Google Scholar]
- Fragoso, R.M.; da Silva Carvalho, M.L. Estimation of cost allocation coefficients at the farm level using an entropy approach. J. Appl. Stat. 2013, 40, 1893–1906. [Google Scholar] [CrossRef]
- Garvey, E.; Britz, W. Estimation of Input Allocation from EU Farm Accounting Data Using Generalized Maximum Entropy; Working Paper 02-01; University of Ireland: Dublin, Ireland; Universität Bonn: Bonn, Germany, 2002. [Google Scholar]
- Lence, S.H.; Miller, D.J. Recovering Output-Specific Inputs from Aggregate Input Data: A Generalized Cross-Entropy Approach. Am. J. Agric. Econ. 1998, 80, 852–867. [Google Scholar] [CrossRef]
- Butault, J.-P. Chapter 2, The GECOM model. In Implementation, Validation and Results of the Cost of Production Model Using the EU FADN, FACEPA Deliverable No. 3; Kleinhanss, W., Ed.; vTI: Braunschweig, Germany, 2011. [Google Scholar]
- Kleinhanss, W.; Offermann, F.; Butault, J.-P.; Surry, Y. Cost of Production Estimates for Wheat, Milk and Pigs in Selected EU Member States. Arbeitsberichte aus der vTI-Agrarökonomie; No. 07/2011. 2011. Available online: http://www.econstor.eu/handle/10419/53152 (accessed on 22 June 2017).
- Tiberti, M. Production costs of Soft Wheat in Italy. In Proceedings of the Second Conference of the Italian Association of Agricultural and Applied Economics, Parma, Italy, 6–7 June 2013. [Google Scholar]
- Moxey, A.; Tiffin, R. Estimating linear production coefficients from farm business survey data: A note. J. Agric. Econ. 1994, 45, 381–385. [Google Scholar] [CrossRef]
- Griffiths, W.E.; O’Donnell, C.J.; Tan Cruz, A. Imposing regularity conditions on a system of cost and factor share equations. Aust. J. Agric. Resour. Econ. 2000, 44, 107–127. [Google Scholar] [CrossRef]
- Desbois, D.; Butault, J.-P.; Surry, Y. Estimation des coûts de production en phytosanitaires pour les grandes cultures. Une approche par la régression quantile. Écon. Rural. 2013, 333, 27–49. [Google Scholar] [CrossRef]
- Arfini, F.; Donati, M.; Veneziani, M. Assessing farm production costs using PMP: Theoretical foundation and empirical validation. In Proceedings of the 29th International Conference of Agricultural Economists, Milan, Italy, 8–14 August 2015. [Google Scholar]
- Golan, A.; Judge, G.; Miller, D. Maximum Entropy Econometrics: Robust Estimation with Limited Data; John Wiley & Sons: Chichester, UK, 1996. [Google Scholar]
- Rosenthal, R. GAMS—A User’s Guide, Tutorial; GAMS Development Corporation: Washington, DC, USA, 2013. [Google Scholar]
- Robinson, S.; El-Said, M. Estimating a Social Accounting Matrix Using Entropy Difference Methods; TMD Discussion Paper No. 21; International Food Policy Research Institute: Washington, DC, USA, 1997. [Google Scholar]
- Campbell, R.C.; Hill, R.C. Imposing Parameter Inequality Restrictions using the Principle of Maximum Entropy. J. Stat. Comput. Simul. 2006, 76, 985–1000. [Google Scholar] [CrossRef]
- Roesch, A.; Hausheer Schnider, J. Grundlagenbericht 2008; Agroscope Reckenholz-Tänikon Research Station: Ettenhausen, Switzerland, 2009. [Google Scholar]
- Agridea; FiBL. Deckungsbeiträge Ausgabe 2008; Agridea and Forschungsinstitut für Biologischen Landbau (FiBL): Lindau, Switzerland, 2008. [Google Scholar]
- Albisser, G.; Gazzarin, C. Vollkostenkalkulationen für Betriebszweige; Agroscope Reckenholz-Tänikon Research Station: Ettenhausen, Switzerland, 2010. [Google Scholar]
- Lips, M.; Ammann, H. Vollkostenkalkulationen für Ackerkulturen. Agrarforschung 2006, 13, 210–214. [Google Scholar]
- Alder, T. Vollkostenkalkulation für die Mostobstproduktion, Vergleich der Produktionskosten von Mostobst zwischen der Ostschweiz und Baden-Württemberg; ART-Bericht No. 691; Agroscope Reckenholz-Tänikon Research Station: Tänikon, Switzerland, 2007. [Google Scholar]
- Bundesamt für Landwirtschaft. Agrarbericht 2009 des Bundesamtes für Landwirtschaft; Bundesamt für Landwirtschaft: Bern, Switzerland, 2009. [Google Scholar]
- Lips, M. Calculating full costs for Swiss dairy farms in the mountain region using a maximum entropy approach for joint-cost allocation. Int. J. Agric. Manag. 2014, 3, 145–153. [Google Scholar]
- Craig, K. (Ed.) The Farm Management Handbook 2016/17, 37th ed.; The UK Reference for Farm Business Management; SAC Consulting: Midlothian, UK, 2016. [Google Scholar]
- Redman, G. (Ed.) John Nix Farm Management Pocketbook for 2016, 46th ed.; The Pocketbook: Melton Mowbray, UK, 2015. [Google Scholar]
- Lips, M. Joint Cost Allocation by Means of Maximum Entropy. In Proceedings of the 28th International Conference of Agricultural Economists, Foz do Iguaçu, Brazil, 18–24 August 2012. [Google Scholar]
- Lips, M. Disproportionate Joint Cost Allocation at Individual-Farm Level Using Maximum Entropy; Working Paper; Institute for Sustainability Sciences: Ettenhausen, Switzerland, 2014. [Google Scholar]
Labour Input | Machinery Costs | ||||||
---|---|---|---|---|---|---|---|
Group No. | Enterprise | µ NWD | Δ NWD | Group No. | Enterprise | µ CHF | Δ CHF |
Group 4 | Other Crops | 64.00 | 57.59 | Group 4 | Other Crops | 5000 | 2161 |
Potatoes | 18.30 | 11.89 | Potatoes | 4553 | 1714 | ||
Group 3 | Sugar Beet | 6.41 | 2.11 | Group 3 | Sugar Beet | 2839 | 1187 |
Silage Maize | 2629 | 977 | |||||
Grassland | 2221 | 569 | |||||
Group 2 | Peas | 4.30 | 3.30 | Group 2 | Peas | 1652 | 1110 |
Grassland | 3.75 | 2.75 | |||||
Silage Maize | 3.70 | 2.70 | |||||
Maize | 3.60 | 2.60 | Wheat | 1591 | 1049 | ||
Fallow Land | 3.33 | 2.33 | Barley | 1506 | 964 | ||
Wheat | 3.30 | 2.30 | Oilseeds | 1366 | 824 | ||
Barley | 3.24 | 2.24 | Maize | 1338 | 796 | ||
Oilseeds | 2.78 | 1.78 | |||||
Group 1 | Forest | 1.00 | 1.00 | Group 1 | Fallow Land | 542 | 542 |
Forest | 352 | 352 |
Labour Input | Machinery Costs | |
---|---|---|
Mean value of α | 2.52 | 0.85 |
Standard error of α | 1.86 | 0.34 |
Median of α | 1.99 | 0.80 |
Minimum value of α | 1.05 | 0.40 |
Maximum value of α | 9.55 | 1.73 |
Enterprise | No. of Cases | Proportional | CoreModel | InequalityModel | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean in NWD/CHF | Mean in NWD/CHF | Deviations from Proportional in % | Mean in NWD/CHF | Deviations from Proportional in % | ||||||||
Mean | SE | Median | Mean | SE | Median | |||||||
(a) | ||||||||||||
Wheat | 33 | 8.7 | 8.2 | −7.1 | 7.0 | −5.1 | 8.3 | −5.8 | 7.0 | −2.4 | ||
Barley | 22 | 7.7 | 7.4 | −4.6 | 5.3 | −2.3 | 7.5 | −3.8 | 4.7 | −1.6 | ||
Maize | 15 | 9.3 | 8.7 | −7.6 | 9.0 | −2.9 | 8.9 | −5.7 | 9.6 | 0.1 | ||
Silage Maize | 15 | 8.8 | 8.6 | −2.8 | 5.5 | −1.3 | 8.7 | −0.9 | 4.6 | 0.8 | ||
Potatoes | 7 | 37.5 | 44.4 | 16.5 | 10.7 | 18.2 | 42.8 | 12.5 | 8.9 | 15.1 | ||
Sugar Beet | 23 | 17.0 | 18.1 | 4.9 | 10.9 | 9.5 | 17.1 | −0.2 | 8.8 | 3.7 | ||
Oilseeds | 31 | 7.4 | 6.8 | −8.8 | 6.3 | −7.9 | 6.8 | −8.4 | 6.2 | −6.8 | ||
Peas | 13 | 8.2 | 7.7 | −4.3 | 7.6 | −7.3 | 8.0 | −1.4 | 6.9 | −4.1 | ||
Grassland | 36 | 9.4 | 9.1 | −4.9 | 7.4 | −1.9 | 9.3 | −2.9 | 7.6 | 1.1 | ||
Fallow Land | 13 | 6.8 | 6.4 | −5.4 | 6.0 | −4.8 | 6.5 | −4.0 | 5.0 | −2.0 | ||
Forest | 20 | 2.6 | 2.0 | −18.9 | 8.5 | −22.5 | 2.2 | −14.0 | 7.2 | −14.6 | ||
Other Crops | 7 | 117.1 | 138.0 | 14.3 | 10.3 | 9.2 | 137.6 | 14.3 | 9.4 | 9.5 | ||
(b) | ||||||||||||
Wheat | 33 | 1275 | 1337 | 7.5 | 11.4 | 3.7 | 1282 | 0.8 | 4.0 | 0.0 | ||
Barley | 22 | 1367 | 1409 | 6.2 | 13.3 | 2.7 | 1382 | 2.1 | 5.6 | 0.5 | ||
Maize | 15 | 1266 | 1310 | 6.2 | 9.7 | 5.6 | 1295 | 4.0 | 6.0 | 3.7 | ||
Silage Maize | 15 | 2217 | 2134 | −7.1 | 14.5 | −5.0 | 2203 | −1.3 | 5.3 | −0.3 | ||
Potatoes | 7 | 3345 | 2611 | −31.7 | 22.1 | −39.4 | 3039 | −13.3 | 9.6 | −15.8 | ||
Sugar Beet | 23 | 2376 | 2228 | −9.5 | 14.8 | −2.8 | 2317 | −3.8 | 6.0 | −1.2 | ||
Oilseeds | 31 | 1124 | 1199 | 10.0 | 11.0 | 7.8 | 1170 | 6.1 | 6.6 | 4.7 | ||
Peas | 13 | 1080 | 1191 | 13.1 | 14.2 | 11.5 | 1079 | −0.4 | 5.8 | −0.2 | ||
Grassland | 36 | 1884 | 1851 | −3.1 | 9.6 | −0.3 | 1914 | 2.5 | 4.8 | 1.0 | ||
Fallow Land | 13 | 449 | 535 | 36.3 | 41.0 | 37.5 | 489 | 17.2 | 19.6 | 16.6 | ||
Forest | 20 | 312 | 361 | 29.4 | 38.5 | 20.3 | 346 | 20.5 | 26.7 | 14.4 | ||
Other Crops | 7 | 3508 | 2518 | −34.8 | 26.7 | −38.5 | 2992 | −18.0 | 13.1 | −22.2 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lips, M. Disproportionate Allocation of Indirect Costs at Individual-Farm Level Using Maximum Entropy. Entropy 2017, 19, 453. https://doi.org/10.3390/e19090453
Lips M. Disproportionate Allocation of Indirect Costs at Individual-Farm Level Using Maximum Entropy. Entropy. 2017; 19(9):453. https://doi.org/10.3390/e19090453
Chicago/Turabian StyleLips, Markus. 2017. "Disproportionate Allocation of Indirect Costs at Individual-Farm Level Using Maximum Entropy" Entropy 19, no. 9: 453. https://doi.org/10.3390/e19090453
APA StyleLips, M. (2017). Disproportionate Allocation of Indirect Costs at Individual-Farm Level Using Maximum Entropy. Entropy, 19(9), 453. https://doi.org/10.3390/e19090453