# Comparative Analysis of Jüttner’s Calculation of the Energy of a Relativistic Ideal Gas and Implications for Accelerator Physics and Cosmology

## Abstract

**:**

## 1. Introduction

## 2. Jüttner Energy Calculation

## 3. Parametrized Statistical Mechanics

#### 3.1. Relativistic Ideal Gas

#### 3.2. Microcanonical Ensemble

#### 3.3. Ideal Gas Law

## 4. Horwitz et al., Calculation of the Energy of an Ideal Gas

#### 4.1. Canonical Ensemble

#### 4.2. Energy Calculation

## 5. Energy Comparison

## 6. Discussion and Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Jüttner, F. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Ann. Phys.
**1911**, 34, 856–882. [Google Scholar] [CrossRef] - Pauli, W. Theory of Relativity; Dover: New York, NY, USA, 1958. [Google Scholar]
- Greiner, W.; Neise, L.; Stöcker, H. Thermodynamics and Statistical Mechanics; Springer-Verlag: New York, NY, USA, 1995. [Google Scholar]
- Horwitz, L.P.; Schieve, W.C.; Piron, C. Gibbs ensembles in relativistic classical and quantum mechanics. Ann. Phys.
**1981**, 137, 306–340. [Google Scholar] [CrossRef] - Fanchi, J.R. Parametrized Relativistic Quantum Theory; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Fanchi, J.R. Manifestly Covariant Quantum Theory with Invariant Evolution Parameter in Relativistic Dynamics. Found. Phys.
**2011**, 41, 4–32. [Google Scholar] [CrossRef] - Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1972. [Google Scholar]
- Arfken, G. Mathematical Methods for Physicists; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Schieve, W.C.; Horwitz, L.P. Quantum Statistical Mechanics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Horwitz, L.P. Relativistic Quantum Mechanics; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Chacón-Acosta, G.; Dagdug, L.; Morales-Técotl, H.A. Manifestly covariant Jüttner distribution and equipartition theorem. Phys. Rev. E
**2010**, 81, 1–9. [Google Scholar] [CrossRef] [PubMed] - Ghodrat, M.; Montakhab, A. Time parametrization and stationary distributions in a relativistic gas. Phys. Rev. E
**2010**, 82, 1–5. [Google Scholar] [CrossRef] [PubMed] - Horwitz, L.P.; Shashoua, S.; Schieve, W.C. A Manifestly Covariant Relativistic Boltzmann Equation for the Evolution of a System of Events. Phys. A
**1989**, 161, 300–338. [Google Scholar] [CrossRef] - Debbasch, F. Equilibrium distribution function of a relativistic dilute perfect gas. Phys. A
**2008**, 387, 2443–2454. [Google Scholar] [CrossRef] - Schieve, W.C. Covariant Relativistic Statistical Mechanics of Many Particles. Found. Phys.
**2005**, 35, 1359–1381. [Google Scholar] [CrossRef] - Pavšič, M. The Landscape of Theoretical Physics: A Global View; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Fanchi, J.R. A generalized quantum field theory. Phys. Rev. D
**1979**, 20, 3108–3119. [Google Scholar] [CrossRef] - Pavšič, M. Branes and Quantized Fields. J. Phys.
**2017**, 845, 1–27. [Google Scholar] [CrossRef] - Pavšič, M. Localized Propagating Tachyons in Extended Relativity Theories; Cornell University Library: Ithaca, NY, USA, 2012. [Google Scholar]
- Carnahan, B.; Luther, H.A.; Wilkes, J.O. Applied Numerical Methods; Wiley: New York, NY, USA, 1969. [Google Scholar]
- Lebedev, N.N. Special Functions and Their Applications; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Fanchi, J.R. Cosmological implications of the Gibbs ensemble in parametrized relativistic classical mechanics. Phys. Rev. A
**1988**, 37, 3956–3962. [Google Scholar] [CrossRef] - Patrignani, C.; et al.; (Particle Data Group) Review of Particle Physics. Chin. Phys. C
**2016**, 40, 100001. Available online: http://pdg.lbl.gov/2017/reviews/rpp2016-rev-hep-collider-params.pdf (accessed on 29 June 2017). - CERN (2017). Available online: https://home.cern/topics/large-hadron-collider (accessed on 29 June 2017).
- ALICE Collaboration. Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions. Nat. Phys.
**2017**, 13, 535–538. [Google Scholar] - Land, M. Speeds of light in Stueckelberg-Horwitz-Piron electrodynamics. J. Phys.
**2017**, 845, 1–17. [Google Scholar] [CrossRef] - Land, M. The Particle as a Statistical Ensemble of Events in Stueckelberg–Horwitz–Piron Electrodynamics. Entropy
**2017**, 19, 234. [Google Scholar] [CrossRef] - Patrignani, C.; et al.; (Particle Data Group) Review of Particle Physics. Chin. Phys. C
**2016**, 40, 100001. Available online: http://pdg.lbl.gov/2016/reviews/rpp2016-rev-bbang-cosmology.pdf (accessed on 29 June 2017).

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fanchi, J.R.
Comparative Analysis of Jüttner’s Calculation of the Energy of a Relativistic Ideal Gas and Implications for Accelerator Physics and Cosmology. *Entropy* **2017**, *19*, 374.
https://doi.org/10.3390/e19070374

**AMA Style**

Fanchi JR.
Comparative Analysis of Jüttner’s Calculation of the Energy of a Relativistic Ideal Gas and Implications for Accelerator Physics and Cosmology. *Entropy*. 2017; 19(7):374.
https://doi.org/10.3390/e19070374

**Chicago/Turabian Style**

Fanchi, John R.
2017. "Comparative Analysis of Jüttner’s Calculation of the Energy of a Relativistic Ideal Gas and Implications for Accelerator Physics and Cosmology" *Entropy* 19, no. 7: 374.
https://doi.org/10.3390/e19070374